A204845 Irregular triangle read by rows in which row n lists primitive prime factors of the repunit (10^n - 1)/9 (A002275(n)).
1, 11, 3, 37, 101, 41, 271, 7, 13, 239, 4649, 73, 137, 333667, 9091, 21649, 513239, 9901, 53, 79, 265371653, 909091, 31, 2906161, 17, 5882353, 2071723, 5363222357, 19, 52579, 1111111111111111111, 3541, 27961, 43, 1933, 10838689, 23, 4093, 8779, 11111111111111111111111
Offset: 1
Examples
Triangle begins: 1 11 3 37 101 41 271 7 13 239 4649 73 137 333667 9091 ...
Links
- Ray Chandler, Rows n = 1..322, flattened (first 60 rows from Alois P. Heinz)
- Samuel Yates, The Mystique of Repunits, Math. Mag. 51 (1978), 22-28.
Programs
-
Maple
with(numtheory): S:= proc(n) option remember; `if`(n=1, {1}, S(n-1) union factorset ((10^n-1)/9)) end: T:= n-> sort([(S(n) minus `if`(n=1, {}, S(n-1)))[]])[]: seq(T(n), n=1..30); # Alois P. Heinz, Feb 17 2012
-
Mathematica
S[n_] := S[n] = If[n==1, {1}, S[n-1] ~Union~ FactorInteger[(10^n-1)/9][[ All, 1]]]; T[n_] := Sort[S[n] ~Complement~ If[n==1, {}, S[n-1]]]; Table[ T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 17 2012