A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A204900 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k) is the k-th odd prime.
2, 2, 4, 3, 5, 4, 6, 4, 8, 5, 9, 6, 9, 6, 11, 7, 11, 8, 12, 8, 14, 9, 15, 9, 15, 9, 16, 10, 17, 11, 18, 11, 19, 11, 20, 12, 21, 12, 22, 13, 23, 14, 23, 14, 24, 15, 24, 15, 25, 15, 27, 16, 28, 16, 29, 16, 30, 17, 31, 18, 30, 18, 31, 18, 32, 19, 32, 19, 34, 20, 34, 21, 34
Offset: 1
Keywords
Comments
See A204892 for a discussion and guide to related sequences
Programs
-
Mathematica
s[n_] := s[n] = Prime[n + 1]; z1 = 400; z2 = 50; Table[s[n], {n, 1, 30}] (* A065091 *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204898 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}] (* A204899 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}] (* A204900 *) Table[j[n], {n, 1, z2}] (* A204901 *) Table[s[k[n]], {n, 1, z2}] (* A204902 *) Table[s[j[n]], {n, 1, z2}] (* A204903 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A204904 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A000034 conjectured *)
A204894
Least prime p such that n divides p-q for some prime q
3, 5, 5, 7, 7, 11, 17, 11, 11, 13, 13, 17, 29, 17, 17, 19, 19, 23, 41, 23, 23, 29, 53, 29, 53, 29, 29, 31, 31, 37, 67, 37, 71, 37, 37, 41, 79, 41, 41, 43, 43, 47, 89, 47, 47, 53, 97, 53, 101, 53, 53, 59, 109, 59, 113, 59, 59, 61, 61, 67, 127, 67, 131, 67, 67, 71
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Tony Haddad, Sun-Kai Leung, and Cihan Sabuncu, Visiting early at prime times, arXiv preprint (2024). arXiv:2408.11781 [math.NT]
Programs
-
Mathematica
(See the program at A204892.)
-
PARI
a(n)=forprime(p=n+2, , forstep(k=p%n, p-1, n, if(isprime(k), return(p)))) \\ Charles R Greathouse IV, Mar 20 2013
-
PARI
a(n)=if(isprime(n+2),return(n+2)); my(s=if(n%2,2*n,n),t); forprime(p=s+3,, t=p%n; forstep(q=if(t%2,t,t+n),p-s,s,if(isprime(q), return(p)))) \\ Charles R Greathouse IV, Jul 17 2015
-
PARI
a(n)=if(isprime(n+2),return(n+2)); my(s=if(n%2,2*n,n),r); forprime(p=s+3,2*s+1, if(isprime(p-s), return(p))); forprime(p=2*s+3,, r=p%n; forstep(q=if(r%2,r,r+n),p-s,s,if(isprime(q), return(p)))) \\ Charles R Greathouse IV, Aug 31 2024
Formula
n + 2 <= a(n) <= prime(n+1). - Charles R Greathouse IV, Jul 17 2015
Haddad, Leung, & Sabuncu prove that a(n) < 270*n for all large n. Probably this holds for all n. - Charles R Greathouse IV, Aug 29 2024
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI