cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A205011 The index jA205010) for which such j exists.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 3, 3, 2, 4, 7, 6, 5, 3, 6, 3, 2, 2, 1, 6, 6, 7, 1, 6, 4, 5, 3, 6, 4, 6, 11, 3, 7, 2, 2, 4, 2, 7, 8, 5, 3, 6, 15, 7, 4, 4, 1, 6, 2, 4, 3, 8, 6, 3, 9, 6, 7, 4, 18, 6
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A205014 s(k)-s(j), where (s(k),s(j)) is the least pair of central binomial coefficients for which n divides their difference.

Original entry on oeis.org

1, 4, 18, 4, 5, 18, 14, 64, 18, 50, 2508, 672, 182, 14, 3180, 64, 68, 18, 19, 3180, 672, 2508, 69, 672, 50, 182, 918, 672, 232, 3180, 520676, 64, 2508, 68, 3430, 48600, 48618, 2508, 9438, 12800, 246, 672, 115000920, 2508, 48600, 184736, 3431
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205008 Ordered differences of central binomial coefficients.

Original entry on oeis.org

1, 5, 4, 19, 18, 14, 69, 68, 64, 50, 251, 250, 246, 232, 182, 923, 922, 918, 904, 854, 672, 3431, 3430, 3426, 3412, 3362, 3180, 2508, 12869, 12868, 12864, 12850, 12800, 12618, 11946, 9438, 48619, 48618, 48614, 48600, 48550, 48368, 47696
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1)=s(2)-s(1)=2-1=1
a(2)=s(3)-s(1)=6-1=5
a(3)=s(3)-s(2)=6-2=4
a(4)=s(4)-s(1)=20-1=19
a(5)=s(4)-s(2)=20-2=18
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205012 Least s(k) such that n divides s(k)-s(j) for some j

Original entry on oeis.org

2, 6, 20, 6, 6, 20, 20, 70, 20, 70, 3432, 924, 252, 20, 3432, 70, 70, 20, 20, 3432, 924, 3432, 70, 924, 70, 252, 924, 924, 252, 3432, 705432, 70, 3432, 70, 3432, 48620, 48620, 3432, 12870, 12870, 252, 924, 155117520, 3432, 48620, 184756, 3432
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205013 The number s(j)=C(2j-2,j-1) such that n divides s(k)-s(j)>0, where k is the least positive integer for which such a j exists.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 6, 6, 2, 20, 924, 252, 70, 6, 252, 6, 2, 2, 1, 252, 252, 924, 1, 252, 20, 70, 6, 252, 20, 252, 184756, 6, 924, 2, 2, 20, 2, 924, 3432, 70, 6, 252, 40116600, 924, 20, 20, 1, 252, 2, 20, 6, 3432, 252, 6, 12870, 252, 924, 20, 2333606220, 252
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205015 (1/n)*A205014(n).

Original entry on oeis.org

1, 2, 6, 1, 1, 3, 2, 8, 2, 5, 228, 56, 14, 1, 212, 4, 4, 1, 1, 159, 32, 114, 3, 28, 2, 7, 34, 24, 8, 106, 16796, 2, 76, 2, 98, 1350, 1314, 66, 242, 320, 6, 16, 2674440, 57, 1080, 4016, 73, 14, 70, 1, 18, 869, 60, 17, 650, 12, 44, 4, 559519620, 53
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205009 Least k such that n divides the k-th difference between distinct central binomials coefficients.

Original entry on oeis.org

1, 3, 5, 3, 2, 5, 6, 9, 5, 10, 28, 21, 15, 6, 27, 9, 8, 5, 4, 27, 21, 28, 7, 21, 10, 15, 18, 21, 14, 27, 66, 9, 28, 8, 23, 40, 38, 28, 36, 33, 13, 21, 120, 28, 40, 49, 22, 21, 23, 10, 18, 44, 27, 18, 45, 21, 28, 14, 189, 27
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

The ordering of the differences between distinct central binomials coefficients is given by A205008. For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)
Showing 1-8 of 8 results.