cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A205115 The index jA205114) for which such j exists, and s=(1,3,4,7,11,18...), the Lucas numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 5, 1, 4, 5, 2, 3, 2, 5, 1, 5, 8, 4, 6, 4, 1, 3, 3, 2, 8, 1, 6, 2, 14, 4, 1, 7, 6, 5, 2, 8, 3, 4, 9, 2, 3, 2, 4, 1, 7, 4, 2, 4, 5, 1, 3, 8, 8, 5, 12, 6, 9, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A205117 The number s(j) such that n divides s(k)-s(j), where s(j) is the j-th Lucas number and k is the least positive integer for which such a j with 0

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 3, 11, 1, 7, 11, 3, 4, 3, 11, 1, 11, 47, 7, 18, 7, 1, 4, 4, 3, 47, 1, 18, 3, 843, 7, 1, 29, 18, 11, 3, 47, 4, 7, 76, 3, 4, 3, 7, 1, 29, 7, 3, 7, 11, 1, 4, 47, 47, 11, 322, 18, 76, 3
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Maple
    lucas:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2, a(1)=1},a(n),remember):
    f:= proc(n) local j,k,S,t;
        S:= [];
        for k from 1 do
          t:= lucas(k) mod n;
          if member(t,S,j) then return lucas(j) fi;
          S:= [op(S),t];
        od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 21 2018
  • Mathematica
    (See the program at A205114.)

Extensions

Name corrected by Robert Israel, Jan 21 2018

A205118 s(k)-s(j), where (s(k),s(j)) is the least pair of Lucas numbers for which n divides their difference.

Original entry on oeis.org

2, 2, 3, 4, 10, 6, 7, 8, 18, 10, 11, 36, 26, 14, 15, 112, 17, 18, 76, 40, 105, 22, 46, 72, 25, 26, 2160, 28, 29, 120, 1364, 192, 198, 170, 105, 36, 518, 76, 195, 40, 123, 840, 43, 44, 315, 46, 47, 192, 196, 2200, 510, 520, 318, 2160, 275, 112, 3249, 58
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)

A205112 Ordered differences of Lucas numbers.

Original entry on oeis.org

2, 3, 1, 6, 4, 3, 10, 8, 7, 4, 17, 15, 14, 11, 7, 28, 26, 25, 22, 18, 11, 46, 44, 43, 40, 36, 29, 18, 75, 73, 72, 69, 65, 58, 47, 29, 122, 120, 119, 116, 112, 105, 94, 76, 47, 198, 196, 195, 192, 188, 181, 170, 152, 123, 76, 321, 319, 318, 315, 311, 304, 293
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1)=s(2)-s(1)=3-1=2
a(2)=s(3)-s(1)=4-1=3
a(3)=s(3)-s(2)=4-3=1
a(4)=s(4)-s(1)=7-1=6
a(5)=s(4)-s(2)=7-3=4
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)

A205113 Least k such that n divides the k-th difference between distinct Lucas numbers.

Original entry on oeis.org

1, 1, 2, 5, 7, 4, 9, 8, 20, 7, 14, 26, 17, 13, 12, 41, 11, 20, 44, 25, 42, 19, 22, 31, 18, 17, 113, 16, 27, 38, 119, 49, 46, 52, 42, 26, 68, 44, 48, 25, 54, 80, 24, 23, 59, 22, 35, 49, 47, 109, 71, 67, 58, 113, 63, 41, 132, 34, 87, 38
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

The pairs of Lucas numbers are ordered as at A205112. For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Maple
    N:= 100: # to get terms before the first term > N*(N-1)/2
    L:= proc(n) option remember; combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1); end proc:
    A205112:= [seq(seq(L(j)-L(i),i=1..j-1),j=2..N)]:
    M:= N*(N-1)/2:
    f:= proc(n) local k;
      for k from 1 to M do if A205112[k] mod n = 0 then return k fi od;
      -1
    end proc:
    R:= NULL:
    for n from 1 do
    v:= f(n);
    if v = -1 then break fi;
    R:= R,v
    od:
    R; # Robert Israel, Feb 25 2024
  • Mathematica
    (See the program at A205114.)

A205116 Least s(k) such that n divides s(k)-s(j) for some j

Original entry on oeis.org

3, 3, 4, 7, 11, 7, 11, 11, 29, 11, 18, 47, 29, 18, 18, 123, 18, 29, 123, 47, 123, 29, 47, 76, 29, 29, 2207, 29, 47, 123, 2207, 199, 199, 199, 123, 47, 521, 123, 199, 47, 199, 843, 47, 47, 322, 47, 76, 199, 199, 2207, 521, 521, 322, 2207, 322, 123, 3571
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)

A205119 (1/n)*A205118(n).

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 7, 1, 1, 4, 2, 5, 1, 2, 3, 1, 1, 80, 1, 1, 4, 44, 6, 6, 5, 3, 1, 14, 2, 5, 1, 3, 20, 1, 1, 7, 1, 1, 4, 4, 44, 10, 10, 6, 40, 5, 2, 57, 1, 13, 2
Offset: 1

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)
Showing 1-8 of 8 results.