cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205146 Least k such that n divides s(k)-s(j) for some j satisfying 1<=j

Original entry on oeis.org

2, 3, 2, 3, 3, 4, 4, 5, 2, 3, 5, 5, 6, 4, 7, 5, 7, 5, 8, 3, 4, 5, 9, 6, 12, 6, 5, 7, 3, 7, 4, 5, 5, 7, 15, 5, 12, 8, 6, 8, 7, 4, 6, 7, 7, 9, 10, 6, 8, 12, 7, 10, 16, 5, 16, 13, 8, 10, 9, 7, 16, 4, 10, 5, 14, 5, 8, 10, 20, 16, 4, 6, 18, 12, 14, 13, 7, 6, 9, 11
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n] Prime[n + 1]; z1 = 400; z2 = 60;
    Table[s[n], {n, 1, 30}]           (* A006094 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]           (* A205144 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]           (* A205145 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]           (* A205146 *)
    Table[j[n], {n, 1, z2}]           (* A205147 *)
    Table[s[k[n]], {n, 1, z2}]        (* A205148 *)
    Table[s[j[n]], {n, 1, z2}]        (* A205149 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]        (* A205150 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}]    (* A205151 *)
  • PARI
    s(m) = prime(m)*prime(m+1);
    isok(k, n) = my(sk=s(k)); for (j=1, k-1, if (!Mod(sk-s(j), n), return (k)));
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jul 23 2021

Extensions

More terms from Michel Marcus, Jul 23 2021