cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A205147 The index jA205146) for which such j exists, and s(k)=prime(k)*prime(k+1).

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 4, 3, 5, 3, 5, 2, 6, 3, 7, 2, 3, 4, 8, 4, 9, 5, 3, 2, 1, 5, 2, 2, 4, 6, 1, 3, 11, 7, 5, 4, 4, 3, 1, 2, 5, 8, 1, 4, 5, 9, 6, 2, 15, 3, 11, 11, 7, 9, 4, 5
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A205150 s(k)-s(j), where (s(k),s(j)) is the least such pair for which n divides their difference, and s(j)=prime(j)*prime(j+1).

Original entry on oeis.org

9, 20, 9, 20, 20, 42, 42, 128, 9, 20, 66, 108, 78, 42, 180, 128, 102, 108, 114, 20, 42, 66, 230, 144, 850, 78, 108, 308, 29, 180, 62, 128, 66, 102, 2485, 108, 370, 114, 78, 360, 246, 42, 215, 308, 180, 230, 893, 144, 294, 850, 102, 884, 636, 108, 1980
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)
  • PARI
    s(m) = prime(m)*prime(m+1);
    isok(k, n) = my(sk=s(k)); for (j=1, k-1, if (!Mod(sk-s(j), n), return (j)));
    a(n) = my(k=1, x); while (!(j=isok(k, n)), k++); s(k) - s(j); \\ Michel Marcus, Jul 23 2021

A205151 a(n) = A205150(n)/n.

Original entry on oeis.org

9, 10, 3, 5, 4, 7, 6, 16, 1, 2, 6, 9, 6, 3, 12, 8, 6, 6, 6, 1, 2, 3, 10, 6, 34, 3, 4, 11, 1, 6, 2, 4, 2, 3, 71, 3, 10, 3, 2, 9, 6, 1, 5, 7, 4, 5, 19, 3, 6, 17, 2, 17, 12, 2, 36, 11, 2, 4, 10, 3, 50, 1, 12, 2, 31, 1, 6, 13, 74, 23, 1, 2, 50, 5, 24, 23, 4, 1, 8
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)
  • PARI
    s(m) = prime(m)*prime(m+1);
    isok(k, n) = my(sk=s(k)); for (j=1, k-1, if (!Mod(sk-s(j), n), return (j)));
    a(n) = my(k=1, x); while (!(j=isok(k, n)), k++); (s(k) - s(j))/n; \\ Michel Marcus, Jul 23 2021

Extensions

More terms from Michel Marcus, Jul 23 2021

A205144 Ordered differences of distinct binary products of consecutive primes.

Original entry on oeis.org

9, 29, 20, 71, 62, 42, 137, 128, 108, 66, 215, 206, 186, 144, 78, 317, 308, 288, 246, 180, 102, 431, 422, 402, 360, 294, 216, 114, 661, 652, 632, 590, 524, 446, 344, 230, 893, 884, 864, 822, 756, 678, 576, 462, 232, 1141, 1132, 1112, 1070, 1004
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1)=s(2)-s(1)=15-6=9
a(2)=s(3)-s(1)=35-6=29
a(3)=s(3)-s(2)=35-15=20
a(4)=s(4)-s(1)=77-6=71
a(5)=s(4)-s(2)=77-15=62
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)

A205148 Least s(k) such that n divides s(k)-s(j) for some j

Original entry on oeis.org

15, 35, 15, 35, 35, 77, 77, 143, 15, 35, 143, 143, 221, 77, 323, 143, 323, 143, 437, 35, 77, 143, 667, 221, 1517, 221, 143, 323, 35, 323, 77, 143, 143, 323, 2491, 143, 1517, 437, 221, 437, 323, 77, 221, 323, 323, 667, 899, 221, 437, 1517, 323, 899
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)

A205149 The number s(j) such that n divides s(k)-s(j), where s(j)=prime(j)*prime(j+1) and k is the least positive integer for which such a j exists.

Original entry on oeis.org

6, 15, 6, 15, 15, 35, 35, 15, 6, 15, 77, 35, 143, 35, 143, 15, 221, 35, 323, 15, 35, 77, 437, 77, 667, 143, 35, 15, 6, 143, 15, 15, 77, 221, 6, 35, 1147, 323, 143, 77, 77, 35, 6, 15, 143, 437, 6, 77, 143, 667, 221, 15, 2491, 35, 1147, 1147, 323, 667, 77
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)

A205145 Least k such that n divides a difference between distinct binary products of consecutive primes, as ordered in A205144.

Original entry on oeis.org

1, 3, 1, 3, 3, 6, 6, 8, 1, 3, 10, 9, 15, 6, 20, 8, 21, 9, 28, 3, 6, 10, 36, 14, 64, 15, 9, 17, 2, 20, 5, 8, 10, 21, 92, 9, 66, 28, 15, 25, 19, 6, 11, 17, 20, 36, 37, 14, 26, 64, 21, 38, 120, 9, 116, 77, 28, 45, 32, 20
Offset: 1

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205146.)
Showing 1-8 of 8 results.