cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205183 Euler transform of period 5 sequence [ 2, 1, 1, 2, 1, ...].

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 35, 54, 84, 126, 188, 273, 396, 562, 794, 1106, 1533, 2099, 2862, 3864, 5194, 6927, 9198, 12131, 15938, 20817, 27087, 35070, 45246, 58114, 74400, 94870, 120602, 152768, 192957, 242928, 305025, 381857, 476839, 593830, 737776
Offset: 0

Views

Author

Michael Somos, Jan 23 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 4*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 35*x^6 + 54*x^7 + 84*x^8 + ...
q^-7 + 2*q^113 + 4*q^233 + 7*q^353 + 13*q^473 + 21*q^593 + 35*q^713 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^2,-q^3]/QPochhammer[q]^2, {q,0,100}], q] (* G. C. Greubel, Apr 14 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 / (1 - x^k)^[ 1, 2, 1, 1, 2][k%5 + 1], 1 + x * O(x^n)), n))}

Formula

Expansion of G(x) / f(-x) = f(-x^2, -x^3) / f(-x)^2 in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
G.f. is the limit as n goes to infinity of Sum_{k=0..n} x^k^2 / ((x;x)k * (x;x){n-k}) = Sum_{k=-n..n} (-1)^k * x^(k*(5*k - 1)/2) / ((x;x){n-k} * (x;x){n+k}).
G.f.: (Sum_{k>=0} x^k^2 / ((1 - x) ... (1 - x^k))) / Product_{k>0} (1 - x^k).
G.f.: (Sum_{k} (-1)^k * x^(k*(5*k - 1)/2)) / Product_{k>0} (1 - x^k)^2.
Convolution of A000041 and A003114.
a(n) ~ exp(Pi*sqrt(14*n/15)) * sqrt(7*phi) / (4*3^(1/2)*5^(3/4)*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 24 2018