cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205184 Period 12: repeat (1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9).

Original entry on oeis.org

1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9, 1, 8
Offset: 1

Views

Author

Ant King, Jan 23 2012

Keywords

Comments

The terms of this sequence are the digital roots of the indices of those nonzero triangular numbers that are also perfect squares (A001108).

Examples

			As the fourth nonzero triangular number that is also a perfect square is A000217(288), and 288 has digital root A010888(288)=9, then a(4)=9.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1, 9}, 86]
    LinearRecurrence[{0, 1, 0, 0, 0, -1, 0, 1},{1, 8, 4, 9, 7, 8, 7, 9},86] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    a(n)=[9, 1, 8, 4, 9, 7, 8, 7, 9, 4, 8, 1][n%12+1] \\ Charles R Greathouse IV, Jul 17 2016

Formula

G.f.: x*(1+8*x+3*x^2+x^3+3*x^4-x^5+x^6+9*x^7) / ((1-x)*(1+x)*(1+x^2)*(1-sqrt(3)*x+x^2)*(1+sqrt(3)*x+x^2)).
a(n) = a(n-12).
a(n) = 25-a(n-1)-a(n-6)-a(n-7).
a(n) = a(n-2)-a(n-6)+a(n-8).
a(n) = 1/4*(25+(-1)^n*(9+4*sqrt(3)*(cos(n*Pi/6)-cos(5*n*Pi/6))+2*cos(n*Pi/2))).