cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A205247 Number of (n+1)X(n+1) 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same.

Original entry on oeis.org

16, 168, 5212, 387328, 67731268, 27913330476, 27149753088796, 62383316832685352, 338853014329060508764, 4353185098169744392741452, 132316928041105714306034574484, 9518293354852895518368238072987356
Offset: 1

Views

Author

R. H. Hardin Jan 24 2012

Keywords

Comments

Diagonal of A205255

Examples

			Some solutions for n=4
..1..0..0..0..0....1..0..0..0..0....1..1..1..1..1....0..0..0..1..0
..1..1..0..1..0....1..0..1..0..1....1..1..1..1..1....1..1..0..1..0
..1..0..0..1..1....1..0..1..1..1....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..0....1..1..1..0..1....1..1..1..1..1....1..1..0..1..0
..0..0..1..0..0....0..1..0..0..1....1..1..1..1..1....1..0..0..1..0
		

A205248 Number of (n+1) X 2 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.

Original entry on oeis.org

16, 40, 112, 328, 976, 2920, 8752, 26248, 78736, 236200, 708592, 2125768, 6377296, 19131880, 57395632, 172186888, 516560656, 1549681960, 4649045872, 13947137608, 41841412816, 125524238440, 376572715312, 1129718145928, 3389154437776
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2012

Keywords

Comments

Also, the number of cliques in the n-Apollonian network. Cliques in this graph have a maximum size of 4. - Andrew Howroyd, Sep 02 2017

Examples

			Some solutions for n=4:
  1  0    0  1    1  1    0  1    1  1    1  1    1  0    1  0    1  1    1  1
  0  1    0  0    1  1    0  1    0  1    0  1    0  1    0  0    1  1    1  1
  1  0    1  1    1  1    0  1    0  1    0  0    1  0    0  1    1  1    1  1
  0  1    1  0    1  1    0  0    0  1    1  0    0  1    1  1    1  1    1  1
  1  0    0  0    1  1    0  1    1  1    1  1    1  0    0  1    1  1    1  1
		

Crossrefs

Column 1 of A205255.

Programs

Formula

a(n) = 4*a(n-1) - 3*a(n-2).
From Andrew Howroyd, Sep 02 2017: (Start)
a(n) = 4*(3^n + 1).
G.f.: 8*x*(2 - 3*x)/((1 - x)*(1 - 3*x)).
a(n) = 8*A007051(n).
a(n) = 1 + A289521(n) + A067771(n) + A003462(n+1) + A003462(n).
(End)

A205249 Number of (n+1) X 3 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.

Original entry on oeis.org

40, 168, 752, 3416, 15568, 71000, 323856, 1477272, 6738640, 30738648, 140215952, 639602456, 2917580368, 13308696920, 60708323856, 276924225432, 1263204479440, 5762173946328, 26284460772752, 119897955971096, 546920858309968
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2012

Keywords

Comments

Column 2 of A205255.

Examples

			Some solutions for n=4:
..1..1..1....1..0..1....0..0..1....1..1..1....1..1..1....1..1..0....1..1..1
..0..0..1....0..1..0....0..1..1....0..1..0....1..0..1....0..0..0....1..1..1
..1..1..1....1..0..1....1..1..0....0..1..0....1..1..1....0..1..1....1..1..1
..0..1..0....0..1..0....1..0..0....0..1..1....1..0..1....0..1..0....1..1..1
..1..1..1....1..0..1....0..0..1....1..1..0....1..0..0....0..0..0....1..1..1
		

Crossrefs

Cf. A205255.

Formula

Empirical: a(n) = 6*a(n-1) -7*a(n-2) +2*a(n-3).
Empirical g.f.: 8*x*(5 - 9*x + 3*x^2) / ((1 - x)*(1 - 5*x + 2*x^2)). - Colin Barker, Jun 11 2018

A205250 Number of (n+1) X 4 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.

Original entry on oeis.org

112, 752, 5212, 36304, 253072, 1764364, 12301024, 85762192, 597930556, 4168748272, 29064349264, 202635502636, 1412766774400, 9849754525648, 68672102130652, 478779201937552, 3338029812632080, 23272612897409356
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2012

Keywords

Comments

Column 3 of A205255.

Examples

			Some solutions for n=4:
..0..0..1..1....0..1..1..1....1..0..1..1....1..1..0..1....1..1..0..1
..1..0..0..0....1..1..0..1....1..0..0..1....0..1..1..1....0..1..0..1
..0..0..1..1....1..0..0..1....1..1..1..1....1..1..0..0....1..1..0..1
..0..1..1..0....1..1..1..1....0..0..0..1....0..1..1..1....0..1..0..1
..1..1..0..0....1..0..0..1....0..1..0..1....0..0..1..0....1..1..0..1
		

Crossrefs

Cf. A205255.

Formula

Empirical: a(n) = 10*a(n-1) - 24*a(n-2) + 21*a(n-3) - 6*a(n-4).
Empirical g.f.: 4*x*(2 - 3*x)*(14 - 25*x + 10*x^2) / ((1 - x)*(1 - 9*x + 15*x^2 - 6*x^3)). - Colin Barker, Jun 11 2018

A205251 Number of (n+1) X 5 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.

Original entry on oeis.org

328, 3416, 36304, 387328, 4136296, 44183032, 471988176, 5042151648, 53864590280, 575428804376, 6147238485232, 65670238411328, 701547599923496, 7494552376793144, 80063441950649104, 855308552375931040
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2012

Keywords

Comments

Column 4 of A205255.

Examples

			Some solutions for n=4:
..1..0..0..0..0....0..0..1..0..0....0..0..0..1..0....0..0..0..1..0
..1..1..0..1..0....0..1..1..1..0....1..1..0..1..0....0..1..0..0..0
..1..0..0..1..1....0..0..0..1..0....0..0..0..0..0....1..1..0..1..0
..1..1..1..1..0....1..0..1..1..0....1..1..0..1..0....0..0..0..0..0
..0..0..1..0..0....1..1..1..0..0....1..0..0..1..0....1..1..1..0..1
		

Crossrefs

Cf. A205255.

Formula

Empirical: a(n) = 17*a(n-1) - 81*a(n-2) + 157*a(n-3) - 140*a(n-4) + 56*a(n-5) - 8*a(n-6).
Empirical g.f.: 8*x*(41 - 270*x + 600*x^2 - 580*x^3 + 244*x^4 - 36*x^5) / ((1 - x)*(1 - 16*x + 65*x^2 - 92*x^3 + 48*x^4 - 8*x^5)). - Colin Barker, Jun 11 2018

A205252 Number of (n+1)X6 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same.

Original entry on oeis.org

976, 15568, 253072, 4136296, 67731268, 1109832184, 18189909484, 298154846440, 4887277903816, 80111933563468, 1313194979326324, 21525927546323464, 352853780193705268, 5783993041849734796, 94811448308361126868
Offset: 1

Views

Author

R. H. Hardin Jan 24 2012

Keywords

Comments

Column 5 of A205255

Examples

			Some solutions for n=4
..1..0..0..0..1..0....0..0..0..1..0..0....1..1..0..1..0..1....1..1..1..1..0..1
..0..0..1..1..1..0....1..0..1..1..1..1....0..1..1..1..0..1....1..0..1..0..0..0
..1..0..1..0..0..0....1..1..1..0..0..1....0..1..0..1..1..1....0..0..1..0..1..1
..1..0..1..1..0..1....0..1..0..0..1..1....0..1..1..1..0..1....0..1..1..1..1..0
..0..0..0..1..0..0....1..1..0..1..1..0....0..1..0..0..0..1....1..1..0..1..0..0
		

Formula

Empirical: a(n) = 31*a(n-1) -321*a(n-2) +1569*a(n-3) -4179*a(n-4) +6420*a(n-5) -5671*a(n-6) +2668*a(n-7) -516*a(n-8)

A205253 Number of (n+1)X7 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same.

Original entry on oeis.org

2920, 71000, 1764364, 44183032, 1109832184, 27913330476, 702420750928, 17679917387408, 445045123432100, 11203277447970640, 282028756620227128, 7099777698513424924, 178729975670304808352, 4499358353656818662432
Offset: 1

Views

Author

R. H. Hardin Jan 24 2012

Keywords

Comments

Column 6 of A205255

Examples

			Some solutions for n=4
..0..1..0..0..1..0..1....0..1..1..1..0..0..1....1..1..0..0..0..0..1
..1..1..0..1..1..0..0....0..1..0..0..0..1..1....1..0..0..1..0..1..1
..0..0..0..0..1..1..0....1..1..1..0..1..1..0....1..0..1..1..1..1..0
..0..1..0..1..1..0..0....1..0..1..0..0..0..0....1..1..1..0..1..0..0
..0..0..0..1..0..0..1....0..0..1..0..1..1..1....1..0..0..0..0..0..1
		

Formula

Empirical: a(n) = 56*a(n-1) -1164*a(n-2) +12439*a(n-3) -78536*a(n-4) +314610*a(n-5) -829844*a(n-6) +1464316*a(n-7) -1728640*a(n-8) +1345964*a(n-9) -671600*a(n-10) +205552*a(n-11) -36416*a(n-12) +3392*a(n-13) -128*a(n-14)

A205254 Number of (n+1)X8 0..1 arrays with the number of clockwise edge increases in every 2X2 subblock the same.

Original entry on oeis.org

8752, 323856, 12301024, 471988176, 18189909484, 702420750928, 27149753088796, 1049837466171440, 40603753889665636, 1570549319417597660, 60751409051086135564, 2350012855527394133456, 90905131505907584858392
Offset: 1

Views

Author

R. H. Hardin Jan 24 2012

Keywords

Comments

Column 7 of A205255

Examples

			Some solutions for n=4
..1..0..0..1..0..1..0..1....0..1..1..0..1..1..0..1....0..1..1..0..0..0..1..1
..1..1..1..1..1..1..1..1....1..1..0..0..0..0..0..0....0..0..1..0..1..0..1..0
..1..0..1..0..0..0..0..0....0..0..0..1..0..1..1..0....1..1..1..0..1..1..1..0
..1..1..1..0..1..1..1..0....1..0..1..1..1..1..0..0....0..0..0..0..1..0..1..1
..0..1..0..0..0..1..0..0....0..0..0..0..0..1..0..1....0..1..1..0..0..0..0..0
		

Formula

Empirical: a(n) = 106*a(n-1) -4578*a(n-2) +110127*a(n-3) -1685691*a(n-4) +17662632*a(n-5) -132490685*a(n-6) +732439565*a(n-7) -3041749572*a(n-8) +9607185471*a(n-9) -23244897123*a(n-10) +43214022033*a(n-11) -61676422325*a(n-12) +67255934696*a(n-13) -55515488409*a(n-14) +34166147646*a(n-15) -15313024644*a(n-16) +4816467696*a(n-17) -999456992*a(n-18) +121777664*a(n-19) -6527616*a(n-20)
Showing 1-8 of 8 results.