A205341 T(n,k)=Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than k.
0, 0, 1, 0, 2, 0, 0, 3, 2, 2, 0, 4, 6, 11, 0, 0, 5, 12, 35, 24, 5, 0, 6, 20, 82, 138, 93, 0, 0, 7, 30, 160, 454, 689, 272, 14, 0, 8, 42, 277, 1130, 2912, 3272, 971, 0, 0, 9, 56, 441, 2370, 8927, 18652, 16522, 3194, 42, 0, 10, 72, 660, 4424, 22297, 71630, 124299, 83792, 11293, 0, 0
Offset: 1
Examples
Some solutions for n=5, k=3: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..2....2....2....2....3....2....1....2....2....2....2....2....1....3....2....3 ..4....5....4....0....2....4....4....4....1....4....3....1....2....5....5....5 ..6....4....3....1....4....1....2....2....0....1....0....2....4....4....4....4 ..3....3....2....3....1....2....1....3....3....3....2....3....2....2....2....1 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Programs
-
Mathematica
T[n_, m_] := T[n, m] = If[n == 0, 1, 1/(n)*Sum[Sum[Binomial[i, l]*(-1)^l* Sum[(-1)^j*Binomial[i-l, j]*Binomial[(-l - 2*j + i)*m - l - j + i - 1, (-l - 2*j + i)*m-j], {j, 0, (i-l)*m/(2*m+1)}], {l, 0, i}]*T[n-i, m], {i, 1, n}]]; Table[T[n-m+1, m], {n, 1, 11}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
-
Maxima
T(n,m):=if n=0 then 1 else 1/(n)*sum(sum(binomial(i,l)*(-1)^l*sum((-1)^j*binomial(i-l,j)*binomial((-l-2*j+i)*m-l-j+i-1,(-l-2*j+i)*m-j),j,0,(i-l)*m/(2*m+1)),l,0,i)*T(n-i,m),i,1,n); /* Vladimir Kruchinin, Apr 07 2017 */
Formula
Empirical for row n:
n=2: T(2,k) = k
n=3: T(3,k) = k^2 - k
n=4: T(4,k) = (4/3)*k^3 - (1/2)*k^2 + (7/6)*k
n=5: T(5,k) = (23/12)*k^4 - (1/2)*k^3 + (1/12)*k^2 - (3/2)*k
n=6: T(6,k) = (44/15)*k^5 - (5/12)*k^4 + (5/12)*k^2 + (31/15)*k
n=7: T(7,k) = (841/180)*k^6 - (1/3)*k^5 - (19/36)*k^4 + (1/3)*k^3 - (103/90)*k^2 - 3*k
T(n,m) = 1/n*Sum_{i=1..n} (Sum_{,l,0,i} (binomial(i,l)*(-1)^l *Sum_{j=0..(i-l)* m/(2*m+1)}((-1)^j*binomial(i-l,j)*binomial((-l-2*j+i)*m-l-j+i-1,(-l-2*j+i)*m-j)))*T(n-i,m)), T(0,m)=1. - Vladimir Kruchinin, Apr 07 2017
Comments