cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205457 Symmetric matrix, by antidiagonals: C(max(2i,2j),min(2i,2j)), i>=0, j>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 15, 1, 15, 1, 1, 28, 15, 15, 28, 1, 1, 45, 70, 1, 70, 45, 1, 1, 66, 210, 28, 28, 210, 66, 1, 1, 91, 495, 210, 1, 210, 495, 91, 1, 1, 120, 1001, 924, 45, 45, 924, 1001, 120, 1, 1, 153, 1820, 3003, 495, 1, 495, 3003, 1820, 153, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 28 2012

Keywords

Examples

			Northwest corner:
1....6....15...28...45
6....1....15...70...210
15...15...1....28...210
28...70...28...1....45
45...210..210..45...1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := Binomial[Max[2 i - 2, 2 j - 2], Min[2 i - 2, 2 j - 2]]
    TableForm[Table[f[i, j], {i, 1, 10}, {j, 1, 10}]]
    Flatten[Table[f[i, n + 1 - i], {n, 1, 14}, {i, 1, n}]]
  • Maxima
    S(x,y):=((x^3-3*x^2)*y^3-x^2*y^2)/((x^2-2*x+1)*y^3+(-x^2-3)*y^2+(2*x+3)*y-1);
    taylor((S(x,y)+S(y,x))/(x*y)-x*y/(1-x*y)+1/(1-x)+1/(1-y)-1,x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 29 2020 */

Formula

G.f.: (S(x,y)+S(y,x))/(x*y)-x*y/(1-x*y)+1/(1-x)+1/(1-y)-1, where S(x,y)=((x^3-3*x^2)*y^3-x^2*y^2)/((x^2-2*x+1)*y^3+(-x^2-3)*y^2+(2*x+3)*y-1). - Vladimir Kruchinin, Oct 29 2020