cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205506 Least positive integer m > 1 such that 1 - m^k + m^(2*k) is prime, where k=A003586(n).

Original entry on oeis.org

2, 2, 6, 2, 3, 5, 7, 3, 4, 3, 6, 93, 2, 88, 5, 33, 5, 196, 15, 106, 174, 196, 14, 342, 207, 28, 372, 14, 47, 25, 569, 646, 141, 129, 278, 5, 421, 224, 629, 26, 424, 1081, 688, 246, 736, 4392, 124, 484, 759, 791, 4401, 863, 2854, 410, 1044, 22, 848, 1402, 2006
Offset: 1

Views

Author

Lei Zhou, Feb 01 2012

Keywords

Comments

1 - m^k + m^(2*k) equals Phi(6*k,m) when k=2^p*3^q, p>=0, q>=0, which may be prime numbers for certain positive integer m>1.
The Mathematica program given here generates the first 33 terms. Further terms were generated by OpenPFGW.
a(62)=7426, while A003586(62)=3^8=6561.

Examples

			n=1, A003586(1)=1, when m=2, 1-2^1+2^2=3 is prime, so a(1)=2;
n=2, A003586(2)=2, when m=2, 1-2^2+2^4=13 is prime, so a(2)=2;
...
n=7, A003586(7)=9, when m=7, 1-7^9+7^18=1628413557556843 is prime, so a(7)=7.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := n == 3 EulerPhi@n; a = Select[6 Range@500, fQ]/6; l =
    Length[a]; Table[m = a[[j]]; i = 1;
    While[i++; cp = 1 - i^m + i^(2*m); ! PrimeQ[cp]]; i, {j, 1, l}]
  • Python
    from itertools import count
    from sympy import isprime, integer_log
    def A205506(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        k = bisection(f,n,n)
        return next(filter(lambda m:isprime(1-m**k+m**(k<<1)),count(2))) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = A085398(6*A003586(n)). - Jinyuan Wang, Jan 01 2023
a(n) is smallest positive m such that Phi(A033845(n),m) is prime. - Chai Wah Wu, Sep 16 2024