A205507 a(n) = Fibonacci(n) * A004018(n) for n>=1 with a(0)=1, where A004018(n) is the number of ways of writing n as a sum of 2 squares.
1, 4, 4, 0, 12, 40, 0, 0, 84, 136, 440, 0, 0, 1864, 0, 0, 3948, 12776, 10336, 0, 54120, 0, 0, 0, 0, 900300, 971144, 0, 0, 4113832, 0, 0, 8713236, 0, 45623096, 0, 59721408, 193262536, 0, 0, 818673240, 1324641128, 0, 0, 0, 9079225360, 0, 0, 0, 31114968196
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 4*x^2 + 12*x^4 + 40*x^5 + 84*x^8 + 136*x^9 + 440*x^10 +... Compare the g.f to the square of the Jacobi theta_3 series: theta_3(x)^2 = 1 + 4*x + 4*x^2 + 4*x^4 + 8*x^5 + 4*x^8 + 4*x^9 + 8*x^10 +...+ A004018(n)*x^n +... The g.f. equals the sum: A(x) = 1 + 4*x/(1-x-x^2) - 4*2*x^3/(1-4*x^3-x^6) + 4*5*x^5/(1-11*x^5-x^10) - 4*13*x^7/(1-29*x^7-x^14) + 4*34*x^9/(1-76*x^9-x^18) - 4*89*x^11/(1-199*x^11-x^22) + 4*233*x^13/(1-521*x^13-x^26) - 4*610*x^15/(1-1364*x^15-x^30) +... which involves odd-indexed Fibonacci and Lucas numbers.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Join[{1}, Table[Fibonacci[n]*SquaresR[2, n], {n,1,50}]] (* G. C. Greubel, Mar 05 2017 *)
-
PARI
{A004018(n)=polcoeff((1+2*sum(k=1,sqrtint(n+1),x^(k^2),x*O(x^n)))^2,n)} {a(n)=if(n==0,1,fibonacci(n)*A004018(n))}
-
PARI
{Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} {a(n)=polcoeff((1+4*sum(m=0,n+1,(-1)^m*fibonacci(2*m+1)*x^(2*m+1)/(1-Lucas(2*m+1)*x^(2*m+1)-x^(4*m+2)+x*O(x^n)))),n)}
Formula
G.f.: 1 + 4*Sum_{n>=0} (-1)^n*Fibonacci(2*n+1)*x^(2*n+1) / (1 - Lucas(2*n+1)*x^(2*n+1) - x^(4*n+2)), where Lucas(n) = A000204(n).
Comments