A205509 Hamming distance between (n-1)! and n!.
0, 2, 1, 4, 2, 4, 4, 6, 4, 9, 8, 15, 12, 16, 14, 12, 16, 23, 26, 23, 21, 29, 31, 34, 31, 33, 33, 44, 32, 38, 42, 46, 52, 51, 45, 55, 55, 59, 55, 59, 51, 82, 65, 83, 74, 75, 80, 80, 80, 74, 87, 104, 86, 91, 98, 90, 81, 103, 104, 98, 112, 104, 111, 116, 111, 132
Offset: 1
Examples
Since 5!=(0001111000)_2 and 6!=(1011010000)_2, then the number of different binary digits is 4. Therefore, a(6)=4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A001511.
Programs
-
Maple
read("transforms") : Hamming := proc(a,b) XORnos(a,b) ; wt(%) ; end proc: A205509 := proc(n) Hamming((n-1)!,n!) ; end proc: # R. J. Mathar, Apr 02 2012
-
Mathematica
nn = 100; Table[b2 = IntegerDigits[n!, 2]; b1 = IntegerDigits[(n - 1)!, 2, Length[b2]]; Total[Abs[b1 - b2]], {n, nn}] (* T. D. Noe, Jan 31 2012 *)
-
Python
from math import factorial def A205509(n): return ((f:=factorial(n-1))^f*n).bit_count() # Chai Wah Wu, Jul 13 2022
-
Sage
def A205509(n) : f = bin(factorial(n)).lstrip("0b") g = bin(factorial(n-1)).lstrip("0b") h = "".zfill(len(f)-len(g)) + g return sum(a != b for a, b in zip(f, h)) [A205509(k) for k in (1..66)] # Peter Luschny, Jan 31 2012
Comments