A205510 Binary Hamming distance between prime(n) and prime(n+1).
1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 4, 2, 1, 1, 3, 3, 2, 6, 1, 3, 2, 3, 2, 3, 1, 1, 2, 2, 3, 3, 6, 2, 1, 4, 1, 2, 5, 1, 2, 4, 2, 2, 6, 1, 1, 2, 2, 4, 2, 2, 2, 4, 2, 7, 2, 2, 1, 3, 2, 1, 5, 3, 1, 3, 1, 5, 3, 2, 2, 4, 2, 1, 3, 3, 1, 6, 1, 3, 1, 4, 2, 2, 4, 2, 2, 5, 1, 1, 1, 3, 2, 3, 2, 2, 1, 2, 7, 1, 3, 5
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
a:= n-> add(i, i=Bits[GetBits](Bits[Xor](ithprime(n), ithprime(n+1)), 0..-1)): seq(a(n), n=1..100); # Alois P. Heinz, Oct 11 2017
-
Mathematica
Table[Count[IntegerDigits[BitXor[Prime[n],Prime[n+1]],2],1],{n,100}] (* Jayanta Basu, May 26 2013 *)
-
PARI
A205510(n)=norml2(binary(bitxor(prime(n),prime(n+1)))) \\ M. F. Hasler, Jan 29 2012
-
PARI
a(n,p=prime(n),q=nextprime(p+1))=hammingweight(bitxor(p,q)) \\ Charles R Greathouse IV, Nov 15 2022
Extensions
Corrected a(24) and a(25) by M. F. Hasler, Jan 29 2012
Added "binary" to definition. - N. J. A. Sloane, Jul 09 2021
Comments