cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205543 Logarithmic derivative of the Bell numbers (A000110).

Original entry on oeis.org

1, 3, 10, 39, 171, 822, 4271, 23759, 140518, 878883, 5789015, 40019058, 289513303, 2186421919, 17199606090, 140662816543, 1193865048363, 10499107480518, 95528651305671, 898071593401559, 8712429618413678, 87118795125708283, 896925422648691735
Offset: 1

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Comments

a(n) = number of indecomposable partitions (A074664) of [n+3] in which n+3 lies in a doubleton block (see Link). - David Callan, Oct 08 2014

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 39*x^4/4 + 171*x^5/5 + 822*x^6/6 +...
where exponentiation yields the o.g.f. of the Bell numbers:
exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 203*x^6 + 877*x^7 +...
which equals the series:
exp(L(x)) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) +...
		

Crossrefs

Cf. A000110.

Programs

  • PARI
    {a(n)=n*polcoeff(log(sum(m=0,n, x^m/prod(k=1,m, 1-k*x +x*O(x^n)))),n)}

Formula

L.g.f.: log( Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x) ).