A205543 Logarithmic derivative of the Bell numbers (A000110).
1, 3, 10, 39, 171, 822, 4271, 23759, 140518, 878883, 5789015, 40019058, 289513303, 2186421919, 17199606090, 140662816543, 1193865048363, 10499107480518, 95528651305671, 898071593401559, 8712429618413678, 87118795125708283, 896925422648691735
Offset: 1
Keywords
Examples
L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 39*x^4/4 + 171*x^5/5 + 822*x^6/6 +... where exponentiation yields the o.g.f. of the Bell numbers: exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 203*x^6 + 877*x^7 +... which equals the series: exp(L(x)) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) +...
Links
- David Callan, A combinatorial interpretation for this sequence
Crossrefs
Cf. A000110.
Programs
-
PARI
{a(n)=n*polcoeff(log(sum(m=0,n, x^m/prod(k=1,m, 1-k*x +x*O(x^n)))),n)}
Formula
L.g.f.: log( Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x) ).
Comments