A205575 Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,0.
1, 1, 0, 2, 2, 1, 3, 5, 4, 1, 5, 12, 14, 8, 2, 8, 25, 38, 32, 15, 3, 13, 50, 94, 104, 71, 28, 5, 21, 96, 215, 293, 260, 149, 51, 8, 34, 180, 468, 756, 822, 612, 304, 92, 13, 55, 331, 980, 1828, 2346, 2136, 1376, 604, 164, 21
Offset: 0
Examples
Triangle begins : 1 1, 0 2, 2, 1 3, 5, 4, 1 5, 12, 14, 8, 2 8, 25, 38, 32, 15, 3 13, 50, 94, 104, 71, 28, 5
Crossrefs
Programs
-
PARI
T(n,k) = {if(n<0, return(0)); if (n==0, if (k<0, return(0)); if (k==0, return(1))); if (n==1, if (k<0, return(0)); if (k==0, return(1)); if (k==1, return(0))); T(n-1,k)+T(n-1,k-1)+T(n-2,k)+T(n-2,k-1)+T(n-2,k-2);} \\ Michel Marcus, Oct 27 2021
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) + T(n-2,k-2) for n>=2, k>=0, with initial conditions specified by first two rows. T(0,0) = 1, T(1,0) = 1, T(1,1) = 0.
Extensions
a(46), a(48) corrected by Georg Fischer, Oct 27 2021
Comments