A205745 a(n) = card { d | d*p = n, d odd, p prime }.
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a205745 n = sum $ map ((`mod` 2) . (n `div`)) [p | p <- takeWhile (<= n) a000040_list, n `mod` p == 0] -- Reinhard Zumkeller, Jan 31 2012
-
Mathematica
a[n_] := Sum[ Boole[ OddQ[d] && PrimeQ[n/d] ], {d, Divisors[n]} ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 27 2013 *)
-
PARI
a(n)=if(n%2,omega(n),n%4/2) \\ Charles R Greathouse IV, Jan 30 2012
-
Sage
def A205745(n): return sum((n//d) % 2 for d in divisors(n) if is_prime(d)) [A205745(n) for n in (1..105)]
Formula
O.g.f.: Sum_{p prime} x^p/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
Sum_{k=1..n} a(k) = (n/2) * (log(log(n)) + B) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024
Comments