cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205799 E.g.f.: exp( Sum_{n>=1} x^(n*(n+1)/2) / (n*(n+1)/2)! ).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 32, 113, 365, 1373, 6072, 25279, 115633, 606321, 3051413, 16344785, 98402881, 576283953, 3523586227, 23840955908, 158428389359, 1085566420290, 8128568533790, 60203101002122, 455911264482697, 3734114950288571, 30413492882578846
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2012

Keywords

Comments

Number of set partitions of [n] whose block lengths are triangular numbers. - Alois P. Heinz, Jun 10 2018

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 11*x^5/5! + 32*x^6/6! +...
where
log(A(x)) = x + x^3/3! + x^6/6! + x^10/10! + x^15/15! + x^21/21! +...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          issqr(8*j+1), a(n-j)*binomial(n-1, j-1), 0), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 10 2018
  • Mathematica
    m = 30;
    CoefficientList[Exp[Sum[x^(n(n+1)/2)/(n(n+1)/2)!, {n, 1, m}]] + O[x]^m, x]* Range[0, m-1]! (* Jean-François Alcover, Mar 05 2021 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1, sqrtint(2*n+1), x^(m*(m+1)/2)/(m*(m+1)/2)!+x*O(x^n))), n)}