A205810 Irregular triangle read by rows: Whitney numbers c_{n,k} (n >= 0, 0 <= k <= 2n) of Lucas lattices.
1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 8, 9, 8, 6, 4, 1, 1, 5, 10, 15, 20, 21, 20, 15, 10, 5, 1, 1, 6, 15, 26, 39, 48, 52, 48, 39, 26, 15, 6, 1, 1, 7, 21, 42, 70, 98, 119, 127, 119, 98, 70, 42, 21, 7, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1, 1; 1, 2, 1, 2, 1; 1, 3, 3, 4, 3, 3, 1; 1, 4, 6, 8, 9, 8, 6, 4, 1; 1, 5, 10, 15, 20, 21, 20, 15, 10, 5, 1; 1, 6, 15, 26, 39, 48, 52, 48, 39, 26, 15, 6, 1; 1, 7, 21, 42, 70, 98, 119, 127, 119, 98, 70, 42, 21, 7, 1; ...
Links
- Mark E. AlSukaiti and Nafaa Chbili, Alexander and Jones Polynomials of weaving 3-braid links and Whitney rank polynomials of Lucas lattice, arXiv:2303.11398 [math.GT], 2023.
- E. Munarini and N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.
Programs
-
Maple
c:= (n, k)-> `if`(k=2*n, 1, n*add(1/(n-i)*binomial(n-i, n-k+i)*binomial(k-i-1, i), i=0..floor(k/2))): seq(seq(c(n, k), k=0..2*n), n=0..8); # Leonid Bedratyuk, May 15 2018
-
PARI
T(n,k) = if (k==2*n, 1, n*sum(i=0, k\2, 1/(n-i)*binomial(n-i,n-k+i)*binomial(k-i-1,i))); tabf(nn) = for (n=0, nn, for (k=0, 2*n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 16 2018
Formula
c(n, k) = n*Sum_{i = 0..floor(k/2)} 1/(n-i)*binomial(n-i, n-k+i)*binomial(k-i-1, i) for 0 <= k <= 2*n-1; c(n, 2*n) = 1. - Leonid Bedratyuk, May 15 2018
From Peter Bala, Jun 26 2025: (Start)
For n >= 1, the n-th row polynomial R(n, x) = x^n * t(n, 1 + x + 1/x), where t(n, x) = 2*Chebyshev_T(n, x/2) (AlSukaiti and Chbili, Proposition 2.1).
Conjecture: for n >= 1, t(n, x + 1) = Sum_{k = 0..n} c(n, n-k)*t(k, x) - c(n, n). Cf. A097724. (End)