cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205810 Irregular triangle read by rows: Whitney numbers c_{n,k} (n >= 0, 0 <= k <= 2n) of Lucas lattices.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 8, 9, 8, 6, 4, 1, 1, 5, 10, 15, 20, 21, 20, 15, 10, 5, 1, 1, 6, 15, 26, 39, 48, 52, 48, 39, 26, 15, 6, 1, 1, 7, 21, 42, 70, 98, 119, 127, 119, 98, 70, 42, 21, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2012

Keywords

Examples

			Triangle begins:
  1;
  1, 1,  1;
  1, 2,  1,  2,  1;
  1, 3,  3,  4,  3,  3,   1;
  1, 4,  6,  8,  9,  8,   6,   4,   1;
  1, 5, 10, 15, 20, 21,  20,  15,  10,  5,  1;
  1, 6, 15, 26, 39, 48,  52,  48,  39, 26, 15,  6,  1;
  1, 7, 21, 42, 70, 98, 119, 127, 119, 98, 70, 42, 21, 7, 1;
  ...
		

Crossrefs

Main diagonal is A051292.

Programs

  • Maple
    c:= (n, k)-> `if`(k=2*n, 1, n*add(1/(n-i)*binomial(n-i, n-k+i)*binomial(k-i-1, i), i=0..floor(k/2))): seq(seq(c(n, k), k=0..2*n), n=0..8);  # Leonid Bedratyuk, May 15 2018
  • PARI
    T(n,k) = if (k==2*n, 1, n*sum(i=0, k\2, 1/(n-i)*binomial(n-i,n-k+i)*binomial(k-i-1,i)));
    tabf(nn) = for (n=0, nn, for (k=0, 2*n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 16 2018

Formula

c(n, k) = n*Sum_{i = 0..floor(k/2)} 1/(n-i)*binomial(n-i, n-k+i)*binomial(k-i-1, i) for 0 <= k <= 2*n-1; c(n, 2*n) = 1. - Leonid Bedratyuk, May 15 2018
From Peter Bala, Jun 26 2025: (Start)
For n >= 1, the n-th row polynomial R(n, x) = x^n * t(n, 1 + x + 1/x), where t(n, x) = 2*Chebyshev_T(n, x/2) (AlSukaiti and Chbili, Proposition 2.1).
Conjecture: for n >= 1, t(n, x + 1) = Sum_{k = 0..n} c(n, n-k)*t(k, x) - c(n, n). Cf. A097724. (End)