cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205845 [s(k)-s(j)]/3, where the pairs (k,j) are given by A205842 and A205843, and s(k) denotes the (k+1)-st Fibonacci number.

Original entry on oeis.org

1, 2, 1, 4, 6, 11, 7, 18, 14, 7, 29, 28, 27, 47, 41, 77, 76, 75, 48, 125, 124, 123, 96, 48, 203, 199, 192, 185, 328, 322, 281, 532, 528, 521, 514, 329, 861, 857, 850, 843, 658, 329, 1393, 1392, 1391, 1364, 1316, 1268, 2254, 2248, 2207, 1926, 3648
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A205840.
The first six terms match these differences:
s(4)-s(2) = 5-2 = 3 = 3*1
s(5)-s(2) = 8-2 = 6 = 3*2
s(5)-s(4) = 8-5 = 3 = 3*1
s(6)-s(1) = 13-1 = 12 = 3*4
s(7)-s(3) = 21-3 = 18 = 3*6
s(8)-s(1) = 34-1 = 33 + 3*11
(See the program at A205842.)

Examples

			The first six terms match these differences:
s(4)-s(2) = 5-2 = 3 = 3*1
s(5)-s(2) = 8-2 = 6 = 3*2
s(5)-s(4) = 8-5 = 3 = 3*1
s(6)-s(1) = 13-1 = 12 = 3*4
s(7)-s(3) = 21-3 = 18 = 3*6
s(8)-s(1) = 34-1 = 33 + 3*11
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]   (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 3; t = d[c]       (* A205841 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]      (* A205842 *)
    Table[j[n], {n, 1, z2}]      (* A205843 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205844 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205845 *)