A205840 [s(k)-s(j)]/2, where the pairs (k,j) are given by A205837 and A205838.
1, 2, 1, 3, 6, 5, 4, 10, 9, 8, 4, 16, 13, 27, 26, 25, 21, 17, 44, 43, 42, 38, 34, 17, 71, 68, 55, 116, 115, 114, 110, 106, 89, 72, 188, 187, 186, 182, 178, 161, 144, 72, 304, 301, 288, 233, 493, 492, 491, 487, 483, 466, 449, 377, 305, 798, 797, 796, 792, 788
Offset: 1
Keywords
Examples
The first six terms match these differences: s(3)-s(1) = 3-1 = 2 = 2*1 s(4)-s(1) = 5-1 = 4 = 2*2 s(4)-s(3) = 5-3 = 2 = 2*1 s(5)-s(2) = 8-2 = 6 = 2*3 s(6)-s(1) = 13-1 = 12 = 2*6 s(6)-s(3) = 13-3 = 10 = 2*5
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 2; t = d[c] (* A205556 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205837 *) Table[j[n], {n, 1, z2}] (* A205838 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205839 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205840 *)
Comments