A205845 [s(k)-s(j)]/3, where the pairs (k,j) are given by A205842 and A205843, and s(k) denotes the (k+1)-st Fibonacci number.
1, 2, 1, 4, 6, 11, 7, 18, 14, 7, 29, 28, 27, 47, 41, 77, 76, 75, 48, 125, 124, 123, 96, 48, 203, 199, 192, 185, 328, 322, 281, 532, 528, 521, 514, 329, 861, 857, 850, 843, 658, 329, 1393, 1392, 1391, 1364, 1316, 1268, 2254, 2248, 2207, 1926, 3648
Offset: 1
Keywords
Examples
The first six terms match these differences: s(4)-s(2) = 5-2 = 3 = 3*1 s(5)-s(2) = 8-2 = 6 = 3*2 s(5)-s(4) = 8-5 = 3 = 3*1 s(6)-s(1) = 13-1 = 12 = 3*4 s(7)-s(3) = 21-3 = 18 = 3*6 s(8)-s(1) = 34-1 = 33 + 3*11
Programs
-
Mathematica
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 3; t = d[c] (* A205841 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205842 *) Table[j[n], {n, 1, z2}] (* A205843 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205844 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205845 *)
Comments