A205960 Smallest odd number with digit sum equal to n.
1, 11, 3, 13, 5, 15, 7, 17, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9999, 19999, 29999, 39999, 49999, 59999, 69999, 79999, 89999, 99999, 199999, 299999, 399999, 499999
Offset: 1
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,10,-10).
Programs
-
Mathematica
e = 5; Join[Table[l = 1; While[True, a = 2*l - 1; If[Total[IntegerDigits[a]] == n, Break[]]; l++]; a, {n, 8}], Flatten[Table[i*10^j - 1, {j, e}, {i, 9}]]] With[{ds=Table[{n,Total[IntegerDigits[n]]},{n,1,600001,2}]},Table[ SelectFirst[ ds,#[[2]]==k&],{k,50}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 30 2018 *)
Formula
a(n+1) = A069532(n) + 1.
From Chai Wah Wu, Sep 15 2020: (Start)
a(n) = a(n-1) + 10*a(n-9) - 10*a(n-10) for n > 18.
G.f.: x*(90*x^17 - 90*x^16 + 90*x^15 - 90*x^14 + 90*x^13 - 90*x^12 + 90*x^11 - 90*x^10 - 8*x^8 + 10*x^7 - 8*x^6 + 10*x^5 - 8*x^4 + 10*x^3 - 8*x^2 + 10*x + 1)/((x - 1)*(10*x^9 - 1)). (End)
Comments