cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205961 Expansion of 1/(-32*x^5 + 8*x^3 - 4*x^2 - x + 1).

Original entry on oeis.org

1, 1, 5, 1, 13, 9, 85, 177, 477, 921, 1701, 4289, 9389, 28201, 60917, 153041, 308349, 733625, 1645125, 4062177, 9670989, 22625865, 52288405, 118067953, 276204317, 639640537, 1523941861
Offset: 0

Views

Author

Roger L. Bagula, Feb 02 2012

Keywords

Comments

Previous name was: Expand 1/(1 - x/2 - x^2 + x^3 - x^5) in powers of x, then multiply coefficient of x^n by 2^n to get integers.
The sequence is from -1 + x^2 - x^3 - x^4/2 + x^5 with real root 1.1647612555333289.
The limiting ratio of successive terms is 2*1.1647612555333289.
Recurrence: -32 *a (n) + 8 *a (n + 2) - 4 *a (n + 4) + a (n + 5) == 0; with a (1) == 1; a (2) == 1; a (3) == 5; a (4) == 1; a (5) == 13 (from FindSequenceFunction[]).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x/2 - x^2 + x^3 - x^5), {x, 0, 50}], x] * 2^Range[0, 50]
    LinearRecurrence[{1,4,-8,0,32}, {1,1,5,1,13}, 100] (* G. C. Greubel, Nov 16 2016 *)
  • PARI
    for(n=0,30, print1(2^n*polcoeff(1/(1-x/2 - x^2 + x^3 - x^5) + O(x^32), n), ", ")) \\ G. C. Greubel, Nov 16 2016

Extensions

New name from Joerg Arndt, Nov 19 2016