A205961 Expansion of 1/(-32*x^5 + 8*x^3 - 4*x^2 - x + 1).
1, 1, 5, 1, 13, 9, 85, 177, 477, 921, 1701, 4289, 9389, 28201, 60917, 153041, 308349, 733625, 1645125, 4062177, 9670989, 22625865, 52288405, 118067953, 276204317, 639640537, 1523941861
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-8,0,32).
Programs
-
Mathematica
CoefficientList[Series[1/(1 - x/2 - x^2 + x^3 - x^5), {x, 0, 50}], x] * 2^Range[0, 50] LinearRecurrence[{1,4,-8,0,32}, {1,1,5,1,13}, 100] (* G. C. Greubel, Nov 16 2016 *)
-
PARI
for(n=0,30, print1(2^n*polcoeff(1/(1-x/2 - x^2 + x^3 - x^5) + O(x^32), n), ", ")) \\ G. C. Greubel, Nov 16 2016
Extensions
New name from Joerg Arndt, Nov 19 2016
Comments