cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A205963 a(n) = Fibonacci(n)*A000118(n) for n>=1 with a(0)=1, where A000118(n) is the number of ways of writing n as a sum of 4 squares.

Original entry on oeis.org

1, 8, 24, 64, 72, 240, 768, 832, 504, 3536, 7920, 8544, 13824, 26096, 72384, 117120, 23688, 229968, 806208, 668960, 974160, 2802176, 5100768, 5502144, 4451328, 18606200, 40788048, 62853760, 61019712, 123414960, 479255040, 344644864, 52279416, 1353437952, 2463647184
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2012

Keywords

Comments

Compare g.f. to the Lambert series of A000118: 1 + 8*Sum_{n>=1} n*x^n/(1 + (-x)^n).

Examples

			G.f.: A(x) = 1 + 8*x + 24*x^2 + 64*x^3 + 72*x^4 + 240*x^5 + 768*x^6 +...
where A(x) = 1 + 1*8*x + 1*24*x^2 + 2*32*x^3 + 3*24*x^4 + 5*48*x^5 + 8*96*x^6 + 13*64*x^7 + 21*24*x^8 +...+ Fibonacci(n)*A000118(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 8*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1+3*x^2+x^4) + 2*3*x^3/(1-4*x^3-x^6) + 3*4*x^4/(1+7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 8*6*x^6/(1+18*x^6+x^12) + 13*7*x^7/(1-29*x^7-x^14) +...).
		

Crossrefs

Cf. A209443 (Pell variant).

Programs

  • Mathematica
    Join[{1}, Table[Fibonacci[n]*SquaresR[4, n], {n,1,50}]] (* G. C. Greubel, Mar 09 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1+8*sum(m=1,n,fibonacci(m)*m*x^m/(1+Lucas(m)*(-x)^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    for(n=0,31,print1(a(n),", "))

Formula

G.f.: 1 + 8*Sum_{n>=1} Fibonacci(n)*n*x^n/(1 + Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).