cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195980 Coefficients of expansion of "leading root" xi_0(y) of the partial theta function Sum_{n=0..oo} x^n y^{n(n-1)/2}.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 52, 133, 351, 948, 2610, 7298, 20672, 59192, 171059, 498275, 1461437, 4312300, 12792342, 38128354, 114126797, 342914278, 1033914760, 3127154610, 9485523742, 28848101993, 87948036401, 268724650863, 822791384597, 2524113596369, 7757247543181, 23880003051017, 73627904162143, 227347168628991, 702970760225573, 2176459051318522
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2011, Feb 01 2012

Keywords

Comments

Sokal (2011) shows that all the terms are positive.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 52*x^6 + 133*x^7 + 351*x^8 + 948*x^9 + 2610*x^10 + 7298*x^11 + 20672*x^12 + ...
such that
0 = 1 - A(x) + x*A(x)^2 - x^3*A(x)^3 + x^6*A(x)^4 - x^10*A(x)^5 + x^15*A(x)^6 - x^21*A(x)^7 + ... + (-1)^n*x^(n*(n-1)/2)*A(x)^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 35;
    theta0[x_, y_] = Sum[x^n y^(n(n-1)/2), {n, 0, (1/2)(1+Sqrt[1+8nmax]) // Ceiling}];
    xi0[y_] = -Sum[a[n] y^n, {n, 0, nmax}];
    cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax+1) // Normal // Collect[#,y]&, y];
    Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n] , {n, 0, nmax}];
    Table[a[n] /. s[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 05 2018 *)

Formula

From Paul D. Hanna, Jul 13 2023: (Start)
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^n (see Sokal references).
(2) 0 = 1/(1 + A(x)/(1 - A(x)*(1 - x)/(1 + x^2*A(x)/(1 - x*A(x)*(1 - x^2)/(1 + x^4*A(x)/(1 - x^2*A(x)*(1 - x^3)/(1 + x^6*A(x)/(1 - x^3*A(x)*(1 - x^4)/(1 + ...))))))))), a continued fraction due to an identity of a partial elliptic theta function. (End)

A195981 Coefficients of expansion of 1/xi_0(y) (see A195980 for definition).

Original entry on oeis.org

1, -1, -1, -1, -2, -4, -10, -25, -66, -178, -490, -1370, -3881, -11113, -32115, -93542, -274332, -809377, -2400641, -7154066, -21409915, -64317898, -193886665, -586311736, -1778101466, -5406660260, -16479943037, -50344990445, -154120149335, -472717222756, -1452529814867, -4470733286364, -13782117172530, -42549485082664, -131545321942331
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2011, Feb 01 2012

Keywords

Comments

All the terms after the first are negative.

Crossrefs

Programs

  • Mathematica
    nmax = 34;
    theta0[x_, y_] = Sum[x^n y^(n(n-1)/2), {n, 0, (1/2)(1+Sqrt[1+8nmax]) // Ceiling}];
    xi0[y_] = -Sum[a[n] y^n, {n, 0, nmax}];
    cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax+1) // Normal // Collect[#, y]&, y];
    Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n] , {n, 0, nmax}];
    CoefficientList[(-1/xi0[y] /. Array[s, nmax+1, 0]) + O[y]^(nmax+1), y](* Jean-François Alcover, Sep 05 2018 *)

A205999 Inverse Euler transform of A195980.

Original entry on oeis.org

1, 1, 2, 4, 10, 23, 61, 157, 426, 1163, 3253, 9172, 26236, 75634, 220021, 644305, 1898977, 5626720, 16754652, 50104781, 150427938, 453214878, 1369857943, 4152559458, 12621816592, 38459047705, 117453028937, 359455509767, 1102239999454, 3386090204843, 10419804578693, 32115276396739, 99131502581481, 306422345148052, 948423189115351
Offset: 0

Views

Author

N. J. A. Sloane, Feb 02 2012, Feb 03 2012

Keywords

Comments

The sequence is conjectured to be positive, nondecreasing and strictly convex.

Crossrefs

Programs

  • Mathematica
    nmax = 35;
    theta0[x_, y_] = Sum[x^n y^(n (n-1)/2), {n, 0, (1/2) (1 + Sqrt[1 + 8 nmax]) // Ceiling}];
    xi0[y_] = -Sum[b[n] y^n, {n, 0, nmax}];
    cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax + 1) // Normal // Collect[#, y]&, y];
    Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n], {n, 0, nmax}];
    A195980 = Table[b[n] /. s[n], {n, 1, nmax}];
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A195980] (* Jean-François Alcover, Oct 04 2018 *)
Showing 1-3 of 3 results.