cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A195981 Coefficients of expansion of 1/xi_0(y) (see A195980 for definition).

Original entry on oeis.org

1, -1, -1, -1, -2, -4, -10, -25, -66, -178, -490, -1370, -3881, -11113, -32115, -93542, -274332, -809377, -2400641, -7154066, -21409915, -64317898, -193886665, -586311736, -1778101466, -5406660260, -16479943037, -50344990445, -154120149335, -472717222756, -1452529814867, -4470733286364, -13782117172530, -42549485082664, -131545321942331
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2011, Feb 01 2012

Keywords

Comments

All the terms after the first are negative.

Crossrefs

Programs

  • Mathematica
    nmax = 34;
    theta0[x_, y_] = Sum[x^n y^(n(n-1)/2), {n, 0, (1/2)(1+Sqrt[1+8nmax]) // Ceiling}];
    xi0[y_] = -Sum[a[n] y^n, {n, 0, nmax}];
    cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax+1) // Normal // Collect[#, y]&, y];
    Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n] , {n, 0, nmax}];
    CoefficientList[(-1/xi0[y] /. Array[s, nmax+1, 0]) + O[y]^(nmax+1), y](* Jean-François Alcover, Sep 05 2018 *)

A205999 Inverse Euler transform of A195980.

Original entry on oeis.org

1, 1, 2, 4, 10, 23, 61, 157, 426, 1163, 3253, 9172, 26236, 75634, 220021, 644305, 1898977, 5626720, 16754652, 50104781, 150427938, 453214878, 1369857943, 4152559458, 12621816592, 38459047705, 117453028937, 359455509767, 1102239999454, 3386090204843, 10419804578693, 32115276396739, 99131502581481, 306422345148052, 948423189115351
Offset: 0

Views

Author

N. J. A. Sloane, Feb 02 2012, Feb 03 2012

Keywords

Comments

The sequence is conjectured to be positive, nondecreasing and strictly convex.

Crossrefs

Programs

  • Mathematica
    nmax = 35;
    theta0[x_, y_] = Sum[x^n y^(n (n-1)/2), {n, 0, (1/2) (1 + Sqrt[1 + 8 nmax]) // Ceiling}];
    xi0[y_] = -Sum[b[n] y^n, {n, 0, nmax}];
    cc = CoefficientList[theta0[xi0[y], y] + O[y]^(nmax + 1) // Normal // Collect[#, y]&, y];
    Do[s[n] = Solve[cc[[n+1]] == 0][[1, 1]]; cc = cc /. s[n], {n, 0, nmax}];
    A195980 = Table[b[n] /. s[n], {n, 1, nmax}];
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i) Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]];
    EULERi[A195980] (* Jean-François Alcover, Oct 04 2018 *)

A195982 Coefficients of expansion of 1/xi_0(y)^2 (see A195980 for definition).

Original entry on oeis.org

1, -2, -1, 0, -1, -2, -7, -18, -50, -138, -386, -1092, -3122, -9004, -26173, -76606, -225584, -667880, -1986932, -5936754, -17807936, -53606646, -161892564, -490363820, -1489319219, -4534631182, -13838799043, -42323692348, -129697503097, -398183735878, -1224576726538, -3772166985448, -11637362223230, -35953168834338, -111225021683891
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2011. Feb 01 2012

Keywords

Comments

All the terms after the fourth are negative.

Crossrefs

A206000 Inverse Euler transform of 2 - A195981.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 15, 40, 110, 303, 853, 2419, 6950, 20110, 58677, 172267, 508825, 1510472, 4504978, 13491155, 40554394, 122318519, 370075767, 1122830663, 3415591776, 10414918850, 31827804005, 97464863424, 299032201886, 919094334980, 2829593105751, 8724968220133, 26942517476931, 83312297368383
Offset: 0

Views

Author

N. J. A. Sloane, Feb 02 2012, Feb 03 2012

Keywords

Comments

The sequence is conjectured to be nonnegative and convex.

Crossrefs

A357233 a(n) = coefficient of x^n in power series A(x) such that: 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 3, 11, 46, 207, 980, 4810, 24258, 124951, 654587, 3476985, 18682885, 101372340, 554655435, 3056823864, 16953795008, 94555853982, 529986289496, 2983788539017, 16865736120654, 95677703975144, 544554485912572, 3108656601838926, 17794927199793895
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 207*x^5 + 980*x^6 + 4810*x^7 + 24258*x^8 + 124951*x^9 + 654587*x^10 + 3476985*x^11 + 18682885*x^12 + ...
such that
0 = 1 - A(x) + x*A(x)^3 - x^3*A(x)^6 + x^6*A(x)^10 - x^10*A(x)^15 + x^15*A(x)^21 - x^21*A(x)^28 + ... + (-1)^n*x^(n*(n-1)/2)*A(x)^(n*(n+1)/2) + ...
SPECIFIC VALUES.
A(1/7) = 1.2997111125331190764482142994969231...
A(1/8) = 1.221202992288263902503896694281250380662689...
CONTINUED FRACTION.
The continued fraction in formula (2) may be seen to converge to zero as a limit of successive steps that begin as follows:
[2] 1/(1 + A/(1 - A*(1 - x*A)))
[3] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3)))
[4] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)))))
[5] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5)))))
[6] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5/(1 - x^2*A^3*(1 - x^3*A^3)))))))
...
substituting A = A(x), the resulting power series in x are:
[2] x^2 - 3*x^3 - 13*x^4 - 58*x^5 - 275*x^6 - 1350*x^7 + ...
[3] x^3 - 5*x^4 - 23*x^5 - 111*x^6 - 553*x^7 - 2820*x^8 + ...
[4] x^7 + 11*x^8 + 87*x^9 + 602*x^10 + 3894*x^11 + 24245*x^12 + ...
[5] x^9 + 14*x^10 + 132*x^11 + 1046*x^12 + 7538*x^13 + ...
[6] -x^15 - 21*x^16 - 273*x^17 - 2821*x^18 - 25432*x^19 + ...
[7] -x^18 - 25*x^19 - 375*x^20 - 4375*x^21 - 43800*x^22 + ...
[8] x^26 + 34*x^27 + 663*x^28 + 9725*x^29 + 119226*x^30 + ...
...
the limit of these series converges to zero for |x| < r < 1 where r is the radius of convergence of g.f. A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],M=1); for(i=1,n, A = concat(A,0); M = ceil(sqrt(2*(#A)+1));
    A[#A] = polcoeff( sum(n=0,M, (-1)^n * x^(n*(n-1)/2) * Ser(A)^(n*(n+1)/2) ), #A-1) ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas, some of which may use A = A(x) for brevity.
(1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
(2) 0 = 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5/(1 - x^2*A^3*(1 - x^3*A^3)/(1 + x^6*A^7/(1 - x^3*A^4*(1 - x^4*A^4)/(1 + ...))))))))), a continued fraction due to an identity of a partial elliptic theta function.
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A195980. - Paul D. Hanna, Jul 13 2023
Showing 1-5 of 5 results.