A206039 Values of the difference d for 5 primes in arithmetic progression with the minimal start sequence {5 + j*d}, j = 0 to 4.
6, 12, 42, 48, 96, 126, 252, 426, 474, 594, 636, 804, 1218, 1314, 1428, 1566, 1728, 1896, 2106, 2574, 2694, 2898, 3162, 3366, 4332, 4368, 4716, 4914, 4926, 4962, 5472, 5586, 5796, 5838, 6048, 7446, 7572, 7818, 8034, 8958, 9168, 9204, 9714
Offset: 1
Keywords
Examples
d = 12 then {5, 5 + 1*12, 5 + 2*12, 5 + 3*12, 5 + 4*12} = {5, 17, 29, 41, 53}, which is 5 primes in arithmetic progression.
Links
- Sameen Ahmed Khan, Table of n, a(n) for n = 1..10000
- Diophante, A1880. NP en PA (prime numbers in arithmetic progression) (in French).
- Sameen Ahmed Khan, Primes in Geometric-Arithmetic Progression, arXiv preprint arXiv:1203.2083 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 15 2012
- Wikipedia, Primes in arithmetic progression.
- Index entries for sequences related to primes in arithmetic progressions.
Crossrefs
Programs
-
Maple
filter := d -> isprime(5+d) and isprime(5+2*d) and isprime(5+3*d) and isprime(5+4*d) : select(filter, [$(1 .. 10000)]); # Bernard Schott, Jan 25 2023
-
Mathematica
t={}; Do[If[PrimeQ[{5, 5 + d, 5 + 2*d, 5 + 3*d, 5 +4*d}] == {True, True, True, True, True}, AppendTo[t, d]], {d, 10000}]; t Select[Range[10000],AllTrue[5+#*Range[0,4],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 09 2015 *)
Formula
m is a term iff A123556(m) = 3. - Bernard Schott, Jan 25 2023
Comments