A206074 n-th irreducible polynomial over Q (with coefficients 0 or 1) evaluated at x=2.
2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229
Offset: 1
Keywords
Examples
(See the example at A206073.)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21692
- John Brillhart, Michael Filaseta, Andrew Odlyzko, On an irreducibility theorem of A. Cohn, Canad. J. Math. 33(1981), pp. 1055-1059.
- Michael Filaseta, A further generalization of an irreducibility theorem of A. Cohn, Canad J. Math. 34 (1982), pp. 1390-1395.
Crossrefs
Programs
-
Mathematica
t = Table[IntegerDigits[n, 2], {n, 1, 850}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] Table[p[n, x], {n, 1, 15}] u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], AppendTo[u, n]], {n, 300}]; u (* A206074 *) Complement[Range[200], u] (* A205783 *) b[n_] := FromDigits[IntegerDigits[u, 2][[n]]] Table[b[n], {n, 1, 40}] (* A206073 *)
-
PARI
for(n=2, 10^3, if( polisirreducible( Pol(binary(n)) ), print1(n,", ") ) ); \\ Joerg Arndt, Feb 19 2014
Formula
Other identities and observations. For all n >= 1:
A255574(a(n)) = n.
Extensions
Clarified name, added more terms, Joerg Arndt, Feb 20 2014
Comments