cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206074 n-th irreducible polynomial over Q (with coefficients 0 or 1) evaluated at x=2.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 113, 115, 117, 121, 127, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181, 185, 191, 193, 197, 199, 203, 205, 209, 211, 213, 223, 227, 229
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2012

Keywords

Comments

Is every prime present?
Yes, see the Filaseta reference. - Thomas Ordowski, Feb 19 2014
Corresponding evaluation at x=10 is A206073. - Michael Somos, Feb 26 2014

Examples

			(See the example at A206073.)
		

Crossrefs

Cf. A206073, A205783 (complement), A206075 (nonprime terms), A014580 (irreducible over GF(2), a subsequence of this one), A000040 (primes, also a subsequence), A260427 (terms that are reducible over GF(2)).
Cf. A255574 (left inverse).
Cf. also permutations A260421 - A260426.
Disjoint union of A257688 (without 1) and A260428.
a(n) differs from A186891(n+1) for the first time at n=21, where a(21) = 67, while A186891(22) = 65, a term missing from here. There are several other sequences that do not diverge until after approx. the twentieth term from this one (see the context-links).

Programs

  • Mathematica
    t = Table[IntegerDigits[n, 2], {n, 1, 850}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n, x], {n, 1, 15}]
    u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
    AppendTo[u, n]], {n, 300}];
    u                          (* A206074 *)
    Complement[Range[200], u]  (* A205783 *)
    b[n_] := FromDigits[IntegerDigits[u, 2][[n]]]
    Table[b[n], {n, 1, 40}]    (* A206073 *)
  • PARI
    for(n=2, 10^3, if( polisirreducible( Pol(binary(n)) ), print1(n,", ") ) ); \\ Joerg Arndt, Feb 19 2014

Formula

Other identities and observations. For all n >= 1:
A255574(a(n)) = n.

Extensions

Clarified name, added more terms, Joerg Arndt, Feb 20 2014