cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206158 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k+1).

Original entry on oeis.org

1, 2, 10, 272, 24226, 12053252, 40086916024, 429254371605824, 23527609330364490754, 10714627376371224032350052, 16964729291782419425708732425300, 109783535843179466164398767001178968704, 6782057095273243388704415924996348722446049600
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206157.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 272*x^3/3 + 24226*x^4/4 + 12053252*x^5/5 +...
where exponentiation yields A206157:
exp(L(x)) = 1 + 2*x + 7*x^2 + 102*x^3 + 6261*x^4 + 2423430*x^5 + 6686021554*x^6 +...
Illustration of initial terms:
a(1) = 1^1 + 1^3 = 2;
a(2) = 1^1 + 2^3 + 1^5 = 10;
a(3) = 1^1 + 3^3 + 3^5 + 1^7 = 272;
a(4) = 1^1 + 4^3 + 6^5 + 4^7 + 1^9 = 24226;
a(5) = 1^1 + 5^3 + 10^5 + 10^7 + 5^9 + 1^11 = 12053252; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(2*k+1), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(2*k+1))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014