cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A206157 G.f.: exp( Sum_{n>=1} A206158(n)*x^n/n ), where A206158(n) = Sum_{k=0..n} binomial(n,k)^(2*k+1).

Original entry on oeis.org

1, 2, 7, 102, 6261, 2423430, 6686021554, 61335432894584, 2941073857435300366, 1190520035262419577871332, 1696475310227140760623646031573, 9980324833243234634513255755001535870, 565171444566758371735408026461987217216896790
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Logarithmic derivative yields A206158.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 102*x^3 + 6261*x^4 + 2423430*x^5 +...
where the logarithm of the g.f. begins:
log(A(x)) = 2*x + 10*x^2/2 + 272*x^3/3 + 24226*x^4/4 + 12053252*x^5/5 + 40086916024*x^6/6 +...+ A206158(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^(2*k+1))+x*O(x^n))),n)}
    for(n=0,16,print1(a(n),", "))

A220359 Decimal expansion of the root of the equation (1-r)^(2*r-1) = r^(2*r).

Original entry on oeis.org

7, 0, 3, 5, 0, 6, 0, 7, 6, 4, 3, 0, 6, 6, 2, 4, 3, 0, 9, 6, 9, 2, 9, 6, 6, 1, 6, 2, 1, 7, 7, 7, 0, 9, 5, 2, 1, 3, 2, 4, 6, 8, 4, 5, 7, 4, 2, 4, 2, 8, 1, 5, 5, 5, 5, 8, 6, 2, 1, 5, 7, 1, 6, 5, 1, 0, 5, 1, 2, 3, 0, 6, 0, 0, 3, 9, 9, 4, 0, 1, 4, 4, 9, 5, 2, 5, 4, 5, 6, 8, 0, 4, 6, 0, 5, 7, 3, 1, 5, 1, 9, 8, 5, 4, 4, 8, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 12 2012

Keywords

Comments

Constant is associated with A167008, A219206 and A219207.

Examples

			0.70350607643066243...
		

Crossrefs

Programs

  • Maple
    Digits:= 140:
    v:= convert(fsolve( (1-r)^(2*r-1) = r^(2*r), r=1/2), string):
    seq(parse(v[n+2]), n=0..120);  # Alois P. Heinz, Dec 12 2012
  • Mathematica
    RealDigits[r/.FindRoot[(1-r)^(2*r-1)==r^(2*r),{r,1/2}, WorkingPrecision->250], 10, 200][[1]]
  • PARI
    solve(x=.7,1,(1-x)^(2*x-1) - x^(2*x)) \\ Charles R Greathouse IV, Apr 25 2016

A206154 a(n) = Sum_{k=0..n} binomial(n,k)^(k+2).

Original entry on oeis.org

1, 2, 10, 110, 2386, 125752, 14921404, 3697835668, 2223231412546, 3088517564289836, 9040739066816429380, 63462297965044771663708, 1064766030857977088480630740, 37863276208844960432962611293828, 3144384748384240804260912067907833280
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206153.

Examples

			L.g.f.: L(x) = 2*x + 10*x^2/2 + 110*x^3/3 + 2386*x^4/4 + 125752*x^5/5 +...
where exponentiation yields A206151:
exp(L(x)) = 1 + 2*x + 7*x^2 + 48*x^3 + 693*x^4 + 26632*x^5 + 2542514*x^6 +...
Illustration of initial terms:
a(1) = 1^2 + 1^3 = 2;
a(2) = 1^2 + 2^3 + 1^4 = 10;
a(3) = 1^2 + 3^3 + 3^4 + 1^5 = 110;
a(4) = 1^2 + 4^3 + 6^4 + 4^5 + 1^6 = 2386;
a(5) = 1^2 + 5^3 + 10^4 + 10^5 + 5^6 + 1^7 = 125752; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(k+2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 16 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(k+2))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.53362806511..., where r = 0.70350607643... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Jan 29 2014

A206156 a(n) = Sum_{k=0..n} binomial(n,k)^(2*k).

Original entry on oeis.org

1, 2, 6, 92, 5410, 1400652, 2687407464, 18947436116184, 536104663173431874, 130559883231879141946580, 136031455187223511721647272376, 483565526783420050082035900177878504, 14487924180895151383693101563813954330590756
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Ignoring initial term a(0), equals the logarithmic derivative of A206155.

Examples

			L.g.f.: L(x) = 2*x + 6*x^2/2 + 92*x^3/3 + 5410*x^4/4 + 1400652*x^5/5 +...
where exponentiation yields A206155:
exp(L(x)) = 1 + 2*x + 5*x^2 + 38*x^3 + 1425*x^4 + 283002*x^5 + 448468978*x^6 +...
Illustration of initial terms:
a(1) = 1^0 + 1^2 = 2;
a(2) = 1^0 + 2^2 + 1^4 = 6;
a(3) = 1^0 + 3^2 + 3^4 + 1^6 = 92;
a(4) = 1^0 + 4^2 + 6^4 + 4^6 + 1^8 = 5410;
a(5) = 1^0 + 5^2 + 10^4 + 10^6 + 5^8 + 1^10 = 1400652; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]^(2*k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^(2*k))}
    for(n=0,16,print1(a(n),", "))

Formula

Limit n->infinity a(n)^(1/n^2) = r^(2*r^2/(1-2*r)) = 2.3520150420944489879258119..., where r = 0.70350607643066243... (see A220359) is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Mar 03 2014
Showing 1-4 of 4 results.