cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206229 a(n) = [x^n] Product_{k=1..n} (1 + x^k)^(n-k+1).

Original entry on oeis.org

1, 1, 2, 8, 31, 124, 515, 2166, 9182, 39195, 168216, 725043, 3136223, 13606891, 59187790, 258034685, 1127137141, 4932071321, 21614913239, 94859273448, 416820578198, 1833626307670, 8074598332650, 35591081565244, 157013886785417, 693237405812328
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Examples

			Let [x^n] F(x) denote the coefficient of x^n in F(x); then
a(0) = 1;
a(1) = [x] (1+x) = 1;
a(2) = [x^2] (1+x)^2*(1+x^2) = 2;
a(3) = [x^3] (1+x)^3*(1+x^2)^2*(1+x^3) = 8;
a(4) = [x^4] (1+x)^4*(1+x^2)^3*(1+x^3)^2*(1+x^4) = 31; ...
as illustrated below.
The coefficients in Product_{k=1..n} (1+x^k)^(n-k+1) for n=0..9 begin:
n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
n=1: [1,(1), 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=2: [1, 2,(2), 2, 1, 0, 0, 0, 0, 0, 0, 0 ...];
n=3: [1, 3, 5, (8), 10, 10, 10, 8, 5, 3, 1, 0 ...];
n=4: [1, 4, 9, 18, (31), 46, 64, 82, 96, 106, 110, 106 ...];
n=5: [1, 5, 14, 33, 68, (124), 210, 332, 492, 693, 931, ...];
n=6: [1, 6, 20, 54, 127, 266, (515), 934, 1597, 2602, ...];
n=7: [1, 7, 27, 82, 215, 502, 1078, (2166), 4109, 7428, ...];
n=8: [1, 8, 35, 118, 340, 870, 2038, 4454, (9182), 18020, ...];
n=9: [1, 9, 44, 163, 511, 1417, 3582, 8420, 18634,(39195), ...]; ...
where the coefficients in parenthesis start this sequence.
		

Crossrefs

Cf. A206228.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Aug 21 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,(1+x^k+x*O(x^n))^(n-k+1)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007844067631287560916216334645404240888403... and c = 0.1630284922981520921416997097273846855003438911417350833863798... - Vaclav Kotesovec, Aug 21 2018