cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A270914 Decimal expansion of a constant related to the asymptotics of A270913.

Original entry on oeis.org

4, 5, 0, 2, 4, 7, 6, 7, 4, 7, 6, 1, 7, 3, 5, 4, 4, 8, 7, 7, 3, 8, 5, 9, 3, 9, 3, 2, 7, 0, 0, 7, 8, 4, 4, 0, 6, 7, 6, 3, 1, 2, 8, 7, 5, 6, 0, 9, 1, 6, 2, 1, 6, 3, 3, 4, 6, 4, 5, 4, 0, 4, 2, 4, 0, 8, 8, 8, 4, 0, 3, 2, 7, 9, 0, 6, 7, 7, 3, 2, 0, 2, 2, 1, 9, 2, 0, 6, 9, 6, 2, 5, 2, 5, 5, 1, 1, 4, 5, 3, 7, 2, 9, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2016

Keywords

Comments

This constant is very close to exp(5*Pi/(6*sqrt(2))) / sqrt(2) = 4.502476748630924546525119125234175537729... - Vaclav Kotesovec, May 17 2018

Examples

			4.502476747617354487738593932700784406763128756091621633464540424...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 105][[1]] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

Equals limit n->infinity A270913(n)^(1/n).

A206228 a(n) = [x^n] Product_{k=1..n} 1/(1 - x^k)^(n-k+1).

Original entry on oeis.org

1, 1, 4, 17, 80, 384, 1887, 9385, 47139, 238488, 1213588, 6204547, 31844710, 163978344, 846741721, 4382945317, 22735196277, 118151632006, 615032941924, 3206257881171, 16736910271178, 87472908459696, 457662760258109, 2396899780970552, 12564645719730297
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Number of partitions of n with 1 kind of n's, 2 kinds of (n-1)'s, ..., n kinds of 1's, see example. [Joerg Arndt, May 17 2013]

Examples

			Let [x^n] F(x) denote the coefficient of x^n in F(x); then
a(0) = 1;
a(1) = [x] 1/(1-x) = 1;
a(2) = [x^2] 1/((1-x)^2*(1-x^2)) = 4;
a(3) = [x^3] 1/((1-x)^3*(1-x^2)^2*(1-x^3)) = 17;
a(4) = [x^4] 1/((1-x)^4*(1-x^2)^3*(1-x^3)^2*(1-x^4)) = 80; ...
as illustrated below.
The coefficients in Product_{k=1..n} 1/(1-x^k)^(n-k+1) for n=0..9 begin:
n=0: [(1), 0, 0, 0, 0, 0, 0, ...];
n=1: [1,(1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...];
n=2: [1, 2,(4), 6, 9, 12, 16, 20, 25, 30, 36, 42, ...]; (A002620)
n=3: [1, 3, 8, (17), 33, 58, 97, 153, 233, 342, 489, 681, ...]; (A002625)
n=4: [1, 4, 13, 34, (80), 170, 339, 636, 1141, 1964, 3270, ...];
n=5: [1, 5, 19, 58, 157,(384), 874, 1869, 3803, 7408, 13907, ...];
n=6: [1, 6, 26, 90, 273, 746, (1887), 4474, 10062, 21620, ...];
n=7: [1, 7, 34, 131, 438, 1314, 3632, (9385), 22940, 53466, ...];
n=8: [1, 8, 43, 182, 663, 2158, 6445, 17944, (47139), 117842, ...];
n=9: [1, 9, 53, 244, 960, 3361, 10757, 32008, 89651, (238488), ...]; ...
where the coefficients in parenthesis start this sequence.
Incidentally, the antidiagonal sums in the above table form A206119.
From _Joerg Arndt_, May 17 2013: (Start)
There are a(3)=17 partitions of 3 into 1 kind of 3's, 2 kinds of 2's, and 3 kinds of 1's:
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:0  1:2  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  1:1  1:2  ]
06:  [ 1:0  1:2  1:2  ]
07:  [ 1:0  2:0  ]
08:  [ 1:0  2:1  ]
09:  [ 1:1  1:1  1:1  ]
10:  [ 1:1  1:1  1:2  ]
11:  [ 1:1  1:2  1:2  ]
12:  [ 1:1  2:0  ]
13:  [ 1:1  2:1  ]
14:  [ 1:2  1:2  1:2  ]
15:  [ 1:2  2:0  ]
16:  [ 1:2  2:1  ]
17:  [ 3:0  ]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k)^(n-k+1), {k, 1, n}], {x, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Aug 21 2018 *)
  • PARI
    {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^n))^(n-k+1)),n)}
    for(n=0,41,print1(a(n),", "))

Formula

a(n) ~ c * d^n / sqrt(n), where d = A270915 = 5.3527013334866426877724158141653278798514832712869470973196907560641... and c = 0.2030089852709942695768237484498370155967795685257713505678384193773498... - Vaclav Kotesovec, Aug 21 2018

A303174 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1).

Original entry on oeis.org

1, -1, 2, -5, 18, -60, 189, -601, 1967, -6544, 21872, -73247, 246080, -829924, 2808357, -9527485, 32389671, -110316862, 376372802, -1286063899, 4400499380, -15075608840, 51704898623, -177513230200, 610007283817, -2098029341745, 7221561430933, -24875274224531
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] 1/(1 + x) = -1;
a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2;
a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5;
a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18;
a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins:
n = 0: (1),  0,   0,    0,   0,    0,  ...
n = 1:  1, (-1),  1,   -1,   1,   -1,  ...
n = 2:  1,  -2,  (2),  -2,   3,   -4,  ...
n = 3:  1,  -3,   4,  (-5),  9,  -14,  ...
n = 4:  1,  -4,   7,  -10, (18), -30,  ...
n = 5:  1,  -5,  11,  -18,  33, (-60), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.50975432794970334043727352337... and c = 0.2457469629428839220188283... - Vaclav Kotesovec, Aug 21 2018

A303173 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n-k+1).

Original entry on oeis.org

1, -1, 0, 4, -7, 0, 13, 10, -92, 21, 720, -2019, 1193, 6281, -18054, 16111, 11059, -14653, -57685, -86620, 1281406, -3454742, 2383734, 9409968, -30397071, 43327680, -56130326, 128981571, -73487834, -1219918457, 5059678044, -7826243881, -4131571113, 38850603452
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 - x) = -1;
a(2) = [x^2] (1 - x)^2*(1 - x^2) = 0;
a(3) = [x^3] (1 - x)^3*(1 - x^2)^2*(1 - x^3) = 4;
a(4) = [x^4] (1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4) = -7;
a(5) = [x^5] (1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5) = 0, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 - x^k)^(n-k+1) begins:
n = 0: (1),  0,  0,  0,    0,   0,  ...
n = 1:  1, (-1), 0,  0,    0,   0,  ...
n = 2:  1,  -2, (0), 2,   -1,   0,  ...
n = 3:  1,  -3,  1, (4),  -2,  -2,  ...
n = 4:  1,  -4,  3,  6,  (-7), -2,  ...
n = 5:  1,  -5,  6,  7,  -16,  (0), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 33}]

A303188 a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k).

Original entry on oeis.org

1, 1, 1, 7, 9, 23, 148, 221, 526, 1040, 6767, 9664, 23456, 43943, 91363, 499028, 736410, 1650395, 3107540, 6210372, 10819270, 57864166, 80663444, 179915133, 324882691, 640398244, 1087149284, 2039724322, 9121580902, 12913282685, 27250167385, 48645989650, 92634730208, 156124357449
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x) = 1;
a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1;
a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7;
a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9;
a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins:
n = 0: (1), 0,  0,   0,   0,   0,  ...
n = 1:  1, (1), 0,   0,   0,   0,  ...
n = 2:  1,  2, (1),  2,   0,   0   ...
n = 3:  1,  3,  2,  (7),  3,   2,  ...
n = 4:  1,  4,  3,  14,  (9), 10,  ...
n = 5:  1,  5,  4,  23,  17, (23), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}]

A303483 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1).

Original entry on oeis.org

1, 2, 10, 64, 436, 3072, 22096, 161148, 1187118, 8812050, 65806720, 493827256, 3720698056, 28128081912, 213258301824, 1620878656280, 12346263051028, 94221026620572, 720267101230410, 5514346833878672, 42274910234115352, 324490877248800232, 2493471670778297856, 19179885230907692452
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x)/(1 - x) = 2;
a(2) = [x^2] ((1 + x)^2*(1 + x^2))/((1 - x)^2*(1 - x^2)) = 10;
a(3) = [x^3] ((1 + x)^3*(1 + x^2)^2*(1 + x^3))/((1 - x)^3*(1 - x^2)^2*(1 - x^3)) = 64;
a(4) = [x^4] ((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4))/((1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4)) = 436;
a(5) = [x^5] ((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5))/((1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5)) = 3072, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1) begins:
n = 0: (1),  0,   0,    0,    0,     0,  ...
n = 1:  1,  (2),  2,    2,    2,     2,  ...
n = 2:  1,   4, (10),  20,   34,    52,  ...
n = 3:  1,   6,  22,  (64), 158,   346,  ...
n = 4:  1,   8,  38,  140, (436), 1200,  ...
n = 5:  1,  10,  58,  256,  946, (3072), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.23317816342157644853479309078... - Vaclav Kotesovec, May 04 2018
Showing 1-6 of 6 results.