cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303174 a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n-k+1).

Original entry on oeis.org

1, -1, 2, -5, 18, -60, 189, -601, 1967, -6544, 21872, -73247, 246080, -829924, 2808357, -9527485, 32389671, -110316862, 376372802, -1286063899, 4400499380, -15075608840, 51704898623, -177513230200, 610007283817, -2098029341745, 7221561430933, -24875274224531
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] 1/(1 + x) = -1;
a(2) = [x^2] 1/((1 + x)^2*(1 + x^2)) = 2;
a(3) = [x^3] 1/((1 + x)^3*(1 + x^2)^2*(1 + x^3)) = -5;
a(4) = [x^4] 1/((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4)) = 18;
a(5) = [x^5] 1/((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5)) = -60, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 + x^k)^(n-k+1) begins:
n = 0: (1),  0,   0,    0,   0,    0,  ...
n = 1:  1, (-1),  1,   -1,   1,   -1,  ...
n = 2:  1,  -2,  (2),  -2,   3,   -4,  ...
n = 3:  1,  -3,   4,  (-5),  9,  -14,  ...
n = 4:  1,  -4,   7,  -10, (18), -30,  ...
n = 5:  1,  -5,  11,  -18,  33, (-60), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 27}]

Formula

a(n) ~ (-1)^n * c * d^n / sqrt(n), where d = A318204 = 3.50975432794970334043727352337... and c = 0.2457469629428839220188283... - Vaclav Kotesovec, Aug 21 2018

A303189 a(n) = [x^n] Product_{k=1..n} (1 - (n - k + 1)*x^k).

Original entry on oeis.org

1, -1, -1, 5, 7, 21, -94, -117, -404, -840, 3541, 4536, 14412, 31313, 72175, -249424, -262828, -930639, -1895460, -4441316, -8085972, 24112570, 26214408, 87131883, 180197979, 411759028, 748154122, 1525043990, -3554837744, -3210408245, -11955482059, -23817949142, -55221348072
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 - x) = -1;
a(2) = [x^2] (1 - 2*x)*(1 - x^2) = -1;
a(3) = [x^3] (1 - 3*x)*(1 - 2*x^2)*(1 - x^3) = 5;
a(4) = [x^4] (1 - 4*x)*(1 - 3*x^2)*(1 - 2*x^3)*(1 - x^4) = 7;
a(5) = [x^5] (1 - 5*x)*(1 - 4*x^2)*(1 - 3*x^3)*(1 - 2*x^4)*(1 - x^5) = 21, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} (1 - (n - k + 1)*x^k) begins:
n = 0: (1),  0,   0,   0,   0,   0,  ...
n = 1:  1, (-1),  0,   0,   0,   0,  ...
n = 2:  1,  -2, (-1),  2,   0,   0   ...
n = 3:  1,  -3,  -2,  (5),  3,   2,  ...
n = 4:  1,  -4,  -3,  10,  (7), 10,  ...
n = 5:  1,  -5,  -4,  17,  13, (21), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 32}]

A303483 a(n) = [x^n] Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1).

Original entry on oeis.org

1, 2, 10, 64, 436, 3072, 22096, 161148, 1187118, 8812050, 65806720, 493827256, 3720698056, 28128081912, 213258301824, 1620878656280, 12346263051028, 94221026620572, 720267101230410, 5514346833878672, 42274910234115352, 324490877248800232, 2493471670778297856, 19179885230907692452
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] (1 + x)/(1 - x) = 2;
a(2) = [x^2] ((1 + x)^2*(1 + x^2))/((1 - x)^2*(1 - x^2)) = 10;
a(3) = [x^3] ((1 + x)^3*(1 + x^2)^2*(1 + x^3))/((1 - x)^3*(1 - x^2)^2*(1 - x^3)) = 64;
a(4) = [x^4] ((1 + x)^4*(1 + x^2)^3*(1 + x^3)^2*(1 + x^4))/((1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4)) = 436;
a(5) = [x^5] ((1 + x)^5*(1 + x^2)^4*(1 + x^3)^3*(1 + x^4)^2*(1 + x^5))/((1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5)) = 3072, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} ((1 + x^k)/(1 - x^k))^(n-k+1) begins:
n = 0: (1),  0,   0,    0,    0,     0,  ...
n = 1:  1,  (2),  2,    2,    2,     2,  ...
n = 2:  1,   4, (10),  20,   34,    52,  ...
n = 3:  1,   6,  22,  (64), 158,   346,  ...
n = 4:  1,   8,  38,  140, (436), 1200,  ...
n = 5:  1,  10,  58,  256,  946, (3072), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 7.862983395705905261519347909953827161057584... and c = 0.23317816342157644853479309078... - Vaclav Kotesovec, May 04 2018
Showing 1-3 of 3 results.