cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206244 Number of partitions of n into repunits (A002275).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 05 2012

Keywords

Comments

a(n) = A206245(n) for n <= 120, a(n) < A206245(n) for n > 120.

Examples

			a(12)=2 is the first nontrivial term, from the partitions 12 = 1+1+...+1 = 11+1. - _N. J. A. Sloane_, Jul 26 2017
		

Crossrefs

Programs

  • Haskell
    a206244 = p $ tail a002275_list where
       p _             0 = 1
       p rus'@(ru:rus) n = if n < ru then 0 else p rus' (n - ru) + p rus n
  • Mathematica
    With[{nn = 50}, Table[Count[IntegerPartitions@ n, k_ /; ContainsAll[Array[Floor[10^#/9] &, IntegerLength[nn + 1]], Union@ k]], {n, 0, nn}]] (* Michael De Vlieger, Jul 26 2017 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^((10^k-1)/9)). - Ilya Gutkovskiy, Jul 26 2017