A206244 Number of partitions of n into repunits (A002275).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0
Keywords
Examples
a(12)=2 is the first nontrivial term, from the partitions 12 = 1+1+...+1 = 11+1. - _N. J. A. Sloane_, Jul 26 2017
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Repunit
- Wikipedia, Repunit
- Index entries for related partition-counting sequences
Programs
-
Haskell
a206244 = p $ tail a002275_list where p _ 0 = 1 p rus'@(ru:rus) n = if n < ru then 0 else p rus' (n - ru) + p rus n
-
Mathematica
With[{nn = 50}, Table[Count[IntegerPartitions@ n, k_ /; ContainsAll[Array[Floor[10^#/9] &, IntegerLength[nn + 1]], Union@ k]], {n, 0, nn}]] (* Michael De Vlieger, Jul 26 2017 *)
Formula
G.f.: Product_{k>=1} 1/(1 - x^((10^k-1)/9)). - Ilya Gutkovskiy, Jul 26 2017
Comments