A206246 Numbers n such that the greatest prime divisor p of n^2+1 has the property that (p - n)^2 + 1 = p.
1, 3, 7, 13, 21, 31, 43, 91, 111, 183, 211, 241, 273, 381, 421, 553, 601, 651, 703, 1261, 1333, 1561, 1641, 2863, 2971, 3081, 3193, 4291, 4423, 5403, 5551, 6973, 7141, 8011, 8191, 8743, 8931, 11991, 12211, 13341, 13573, 14281, 14521, 15253, 15501, 15751, 16003
Offset: 1
Keywords
Examples
31 is in the sequence because 31^2 + 1 = 2*13*37 and (37 - 31)^2 + 1 = 37. 43 is in the sequence because 43^2 + 1 = 2*5*5*37 and (37 - 43)^2 + 1 = 37.
Programs
-
Maple
with(numtheory):for n from 1 to 20000 do:x:=n^2+1:y:=factorset(x):n1:=nops(y):p:=y[n1]:q:=(p-n)^2+1:if q=p then printf(`%d, `,n): else fi:od:
-
Mathematica
pn2pQ[n_]:=Module[{p=FactorInteger[n^2+1][[-1,1]]},(p-n)^2+1==p]; Select[ Range[20000],pn2pQ] (* Harvey P. Dale, Nov 20 2019 *)
Comments