A206296 Prime factorization representation of Fibonacci polynomials: a(0) = 1, a(1) = 2, and for n > 1, a(n) = A003961(a(n-1)) * a(n-2).
1, 2, 3, 10, 63, 2750, 842751, 85558343750, 2098355820117528699, 769999781728184386440152910156250, 2359414683424785920146467280333749864720543920418139851
Offset: 0
Keywords
Examples
n a(n) prime factorization Fibonacci polynomial ------------------------------------------------------------ 0 1 (empty) F_0(x) = 0 1 2 p_1 F_1(x) = 1 2 3 p_2 F_2(x) = x 3 10 p_3 * p_1 F_3(x) = x^2 + 1 4 63 p_4 * p_2^2 F_4(x) = x^3 + 2x 5 2750 p_5 * p_3^3 * p_1 F_5(x) = x^4 + 3x^2 + 1 6 842751 p_6 * p_4^4 * p_2^3 F_6(x) = x^5 + 4x^3 + 3x
Links
- Eric Weisstein's World of Mathematics, Fibonacci polynomial
- Wikipedia, Fibonacci polynomials
Crossrefs
Programs
-
Mathematica
c[n_] := CoefficientList[Fibonacci[n, x], x] f[n_] := Product[Prime[k]^c[n][[k]], {k, 1, Length[c[n]]}] Table[f[n], {n, 1, 11}] (* A206296 *)
-
Python
from functools import reduce from sympy import factorint, prime, primepi from operator import mul def a003961(n): F=factorint(n) return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F]) l=[1, 2] for n in range(2, 11): l.append(a003961(l[n - 1])*l[n - 2]) print(l) # Indranil Ghosh, Jun 21 2017
Formula
Extensions
a(0) = 1 prepended (to indicate 0-polynomial), Name changed, Comments and Example section rewritten by Antti Karttunen, Jul 29 2015
Comments