A206306 Riordan array (1, x/(1-3*x+2*x^2)).
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 3, 1; 0, 7, 6, 1; 0, 15, 23, 9, 1; 0, 31, 72, 48, 12, 1; 0, 63, 201, 198, 82, 15, 1; 0, 127, 522, 699, 420, 125, 18, 1; 0, 255, 1291, 2223, 1795, 765, 177, 21, 1; 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1; 0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A206306 if k lt 0 or k gt n then return 0; elif k eq n then return 1; elif k eq 0 then return 0; else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
Maple
# Uses function PMatrix from A357368. PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
SageMath
def T(n,k): # T = A206306 if (k<0 or k>n): return 0 elif (k==n): return 1 elif (k==0): return 0 else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
Formula
Triangle T(n,k), read by rows, given by (0, 3, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Diagonals sums are even-indexed Fibonacci numbers.
G.f.: (1-3*x+2*x^)/(1-(3+y)*x+2*x^2).
From Philippe Deléham, Nov 17 2013; corrected Feb 13 2020: (Start)
T(n, n) = 1.
T(n+1, n) = 3n = A008585(n).
T(n+2, n) = A062725(n).
T(n,k) = 3*T(n-1,k)+T(n-1,k-1)-2*T(n-2,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=T(2,0)=0, T(2,1)=3, T(n,k)=0 if k<0 or if k>n. (End)
From G. C. Greubel, Dec 20 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = [n=1] - A009545(n).
Sum_{k=0..n} (-2)^k*T(n,k) = [n=1] + A078020(n+1).
T(2*n, n+1) = A045741(n+2), n >= 0.
T(2*n+1, n+1) = A244038(n). (End)
Comments