A206328 Primes of the form n^2+1 such that (n+2)^2+1 is also prime.
5, 17, 197, 577, 2917, 15377, 41617, 147457, 215297, 401957, 414737, 509797, 1196837, 1308737, 1378277, 1547537, 1623077, 1726597, 1887877, 2446097, 2604997, 2802277, 2835857, 3857297, 4218917, 4343057, 4384837, 5779217, 6022117, 6421157, 7096897, 8031557
Offset: 1
Examples
For n = 4, n^2 + 1 = 17 is prime and (n+2)^2 + 1 = 37 is also prime => 17 is in the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
for n from 1 to 4000 do: x:=n^2+1:y:=(n+2)^2+1:if type(x,prime)=true and type(y,prime)=true then printf(`%d, `,x): else fi:od:
-
Mathematica
Select[Partition[Range[3000]^2+1,3,1],AllTrue[{#[[1]],#[[3]]},PrimeQ]&][[All,1]] (* Harvey P. Dale, Jan 16 2023 *)
Comments