A206350 Position of 1/n in the canonical bijection from the positive integers to the positive rational numbers.
1, 2, 4, 8, 12, 20, 24, 36, 44, 56, 64, 84, 92, 116, 128, 144, 160, 192, 204, 240, 256, 280, 300, 344, 360, 400, 424, 460, 484, 540, 556, 616, 648, 688, 720, 768, 792, 864, 900, 948, 980, 1060, 1084, 1168, 1208, 1256, 1300, 1392, 1424, 1508, 1548
Offset: 1
Keywords
Examples
The canonical bijection starts with 1/1, 1/2, 2/1, 1/3, 3/1, 2/3, 3/2, 1/4, 4/1, 3/4, 4/3, 1/5, 5/1, so that A206297 starts with 1,3,5,9,13 and this sequence starts with 1,2,4,8,12.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[1] cat [2*(&+[EulerPhi(k): k in [1..n-1]]): n in [2..80]]; // G. C. Greubel, Mar 29 2023
-
Maple
1, op(2*ListTools:-PartialSums(map(numtheory:-phi, [$1..100]))); # Robert Israel, Apr 24 2015
-
Mathematica
a[n_]:= Module[{s=1, k=2, j=1}, While[s<=n, s= s + 2*EulerPhi[k]; k= k+1]; s = s - 2*EulerPhi[k-1]; While[s<=n, If[GCD[j, k-1] == 1, s = s+2]; j = j+1]; If[s>n+1, j-1, k-1]]; t = Table[a[n], {n, 0, 3000}]; (* A038568 *) ReplacePart[Flatten[Position[t, 1]], 1, 1] (* A206350 *) (* Second program *) a[n_]:= If[n==1, 1, 2*Sum[EulerPhi[k], {k, n-1}]];; Table[a[n], {n, 80}] (* G. C. Greubel, Mar 29 2023 *)
-
SageMath
def A206350(n): return 1 if (n==1) else 2*sum(euler_phi(k) for k in range(1,n)) [A206350(n) for n in range(1,80)] # G. C. Greubel, Mar 29 2023
Formula
a(1) = 1, a(n+1) = Sum_{k=1..n} mu(k) * floor(n/k) * floor(1 + n/k), where mu(k) is the Moebius function A008683. - Daniel Suteu, May 28 2018
a(n) = 2*Sum_{k=1..n-1} A000010(k), a(1) = 1. - Robert Israel, Apr 24 2015
Comments