A206418 a(n) is the least integer k > 1 such that 1 + k^(5^n) + k^(2*5^n) + k^(3*5^n) + k^(4*5^n) is prime.
2, 22, 127, 55, 1527, 18453, 5517
Offset: 0
Examples
Phi(5^2, 22) = 705429635566498619547944801 is prime, while Phi(25, k) with k = 2 to 21 are composites, so a(1) = 22.
Links
- David Broadhurst, Coppersmith--Howgrave-Graham certificate tester (2006)
- Chris Caldwell, John Renze's Coppersmith-Howgrave-Graham PARI script
Programs
-
Mathematica
Table[i = 1; m = 5^u; While[i++; cp = 1 + i^m + i^(2*m) + i^(3*m) + i^(4^m); ! PrimeQ[cp]]; i, {u, 1, 4}]
-
PARI
See Broadhurst link.
-
PARI
a(n)=my(k=2);while(!ispseudoprime(polcyclo(5,k^n)),k++);k \\ Charles R Greathouse IV, Feb 09 2012
Formula
a(n) = A085398(5^(n+1)). - Jinyuan Wang, Dec 21 2022
Extensions
a(0) inserted by Jinyuan Wang, Dec 21 2022
Comments