A206435 Total sum of odd parts in the last section of the set of partitions of n.
1, 1, 5, 3, 13, 13, 29, 29, 66, 70, 126, 146, 241, 287, 450, 526, 791, 963, 1360, 1660, 2312, 2810, 3799, 4649, 6158, 7528, 9824, 11962, 15393, 18773, 23804, 28932, 36413, 44093, 54953, 66419, 82085, 98929, 121469, 145865, 177983, 213241, 258585, 308861
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i<1 then [0, 0] else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i)); [g[1]+h[1], g[2]+h[2] +(i mod 2)*h[1]*i] fi end: a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]): seq(a(n), n=1..60); # Alois P. Heinz, Mar 16 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i > n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
Formula
G.f.: (Sum_{i>=0} (2*i+1)*x^(2*i)*(1-x)/(1-x^(2*i+1))) / Product_{j>0} (1-x^j). - Alois P. Heinz, Mar 16 2012
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from Alois P. Heinz, Mar 16 2012
Comments