A206447 Composite numbers n such that sigma(n) = sigma(d) has solution for some other composite number d.
14, 15, 16, 20, 24, 25, 26, 28, 30, 33, 35, 38, 39, 40, 42, 44, 46, 48, 51, 54, 55, 56, 58, 60, 62, 65, 66, 68, 69, 70, 75, 77, 78, 80, 82, 84, 87, 88, 90, 92, 94, 95, 96, 99, 102, 104, 105, 108, 110, 112, 114, 115, 116, 118, 119, 120, 122, 123, 124, 125
Offset: 1
Keywords
Examples
Composite numbers 14 and 15 are in sequence because sigma(14) = sigma(15) = 24.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 500: Res:= {}: Q:= {}: for n from 4 to N do if isprime(n) then next fi; s:= numtheory:-sigma(n); if not assigned(V[s]) then V[s]:= n; if s > N then Q:= Q union {n} fi; else Res:= Res union {n,V[s]}; if s > N then Q:= Q minus {V[s]} fi; fi od: convert(select(`<`,Res, min(Q)),list); # Robert Israel, Dec 17 2017
-
Mathematica
t2 = Table[If[PrimeQ[n], 0, DivisorSigma[1, n]], {n, 1000}]; Select[Range[132], ! PrimeQ[#] && Length[Position[t2, t2[[#]]]] > 1 &] (* T. D. Noe, Feb 27 2012 *)