A206497 The symmetry factor of the rooted tree with Matula-Goebel number n.
1, 1, 1, 2, 1, 1, 2, 6, 2, 1, 1, 2, 1, 2, 1, 24, 2, 2, 6, 2, 2, 1, 2, 6, 2, 1, 6, 4, 1, 1, 1, 120, 1, 2, 2, 4, 2, 6, 1, 6, 1, 2, 2, 2, 2, 2, 1, 24, 8, 2, 2, 2, 24, 6, 1, 12, 6, 1, 2, 2, 2, 1, 4, 720, 1, 1, 6, 4, 2, 2, 2, 12, 2, 2, 2, 12, 2, 1, 1, 24, 24, 1, 2, 4, 2, 2, 1, 6, 6, 2, 2, 4, 1, 1, 6, 120
Offset: 1
Examples
a(2)=1 because the rooted tree with Matula-Goebel number 2 is the 1-edge tree I; a(4)=2 because the rooted tree with Matula-Goebel number 4 is V and there are 2 indistinguishable permutations of the branches.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Ch. Brouder, Runge-Kutta methods and renormalization, arXiv:hep-th/9904014, 1999; Eur. Phys. J. C 12, 2000, 521-534.
- D. J. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra, arXiv:hep-th/9810087, 1998; J. Symbolic Computation, 27, 1999, 581-600.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- M. E. Hoffman, An analogue of covering space theory for ranked posets, The Electronic J. of Combinatorics, 8, 2001, #R32.
- D. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a206497 n = genericIndex a206497_list (n - 1) a206497_list = 1 : g 2 where g x = y : g (x + 1) where y | t > 0 = a206497 t | otherwise = product $ zipWith (\p e -> a000142 e * a206497 p ^ e) (a027748_row x) (a124010_row x) where t = a049084 x -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) if n = 1 then 1 elif nops(factorset(n)) = 1 then factorial(log[factorset(n)[1]](n))*a(pi(factorset(n)[1]))^log[factorset(n)[1]](n) else a(expand(op(1, ifactor(n))))*a(expand(n/op(1, ifactor(n)))) end if end proc: seq(a(n), n = 1 .. 160); with(numtheory): SF := proc (n) local IF, A, FIF, FP, EFP: IF := proc (n) options operator, arrow: ifactors(n) end proc: A := proc (n) options operator, arrow: op(2, IF(n)) end proc: FIF := proc (n) options operator, arrow: op(1, A(n)) end proc: FP := proc (n) options operator, arrow: op(1, FIF(n)) end proc: EFP := proc (n) options operator, arrow: op(2, FIF(n)) end proc: if n = 1 then 1 elif bigomega(n) = 1 then SF(pi(n)) elif nops(A(n)) = 1 then factorial(EFP(n))*SF(pi(FP(n)))^EFP(n) else SF(FP(n)^EFP(n))*SF(n/FP(n)^EFP(n)) end if end proc: seq(SF(n), n = 1 .. 160); # Emeric Deutsch, Apr 30 2015
-
Mathematica
a[n_] := a[n] = If[n==1, 1, If[PrimeQ[n], a[PrimePi[n]], Product[{p, e} = pe; e! a[p]^e, {pe, FactorInteger[n]}]]]; a /@ Range[1, 100] (* Jean-François Alcover, Sep 25 2019 *)
-
PARI
a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); e!*a(primepi(p))^e)} \\ Andrew Howroyd, Aug 01 2018
Formula
a(1)=1; if n=prime(t), then a(n) = a(t); if n = p^u*q^v ... is the prime factorization of n, then a(n) =(u!*a(p)^u)*(v!*a(q)^v)... . (see Eq (2) in the Brouder reference).
If m and n are relatively prime, then a(m*n) = a(m)*a(n).
a(1)=1; if n=p^u, where p is the t-th prime, then a(n) = u!*a(t)^u; if n=r*s, r,s>=2, gcd(r,s)=1, then a(n)=a(r)a(s). Both Maple programs are based on these recurrence relations.
Extensions
Keyword:mult added by Andrew Howroyd, Aug 01 2018
Comments