A204766 a(n) = 167*(n-1)-a(n-1) with n>1, a(1)=13.
13, 154, 180, 321, 347, 488, 514, 655, 681, 822, 848, 989, 1015, 1156, 1182, 1323, 1349, 1490, 1516, 1657, 1683, 1824, 1850, 1991, 2017, 2158, 2184, 2325, 2351, 2492, 2518, 2659, 2685, 2826, 2852, 2993, 3019, 3160
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[(-167+115*(-1)^n+334*n)/4: n in [1..60]];
-
Mathematica
CoefficientList[Series[x*(13+141*x+13*x^2)/((1+x)*(x-1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, -1}, {13, 154, 180}, 40]
Formula
G.f.: x*(13+141*x+13*x^2)/((1+x)*(x-1)^2).
a(n) = (-167+115*(-1)^n+334*n)/4.
a(n) = a(n-1)+a(n-2)-a(n-3).
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(13*Pi/167)*Pi/167. - Amiram Eldar, Feb 28 2023
Comments