cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206563 Triangle read by rows: T(n,k) = number of odd/even parts >= k in all partitions of n, if k is odd/even.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 8, 4, 1, 1, 15, 5, 3, 1, 1, 24, 11, 5, 3, 1, 1, 39, 15, 9, 4, 3, 1, 1, 58, 28, 13, 9, 4, 3, 1, 1, 90, 38, 23, 12, 8, 4, 3, 1, 1, 130, 62, 33, 21, 12, 8, 4, 3, 1, 1, 190, 85, 51, 29, 20, 11, 8, 4, 3, 1, 1, 268, 131, 73, 48, 28, 20, 11, 8, 4, 3, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 15 2012

Keywords

Comments

Let m and n be two positive integers such that m <= n. It appears that any set formed by m connected sections, or m disconnected sections, or a mixture of both, has the same properties described in the section example. (Cf. A135010, A207031, A207032, A212010). - Omar E. Pol, May 01 2012

Examples

			Calculation for n = 6. Write the partitions of 6 and below the sums of their columns:
.
.   6
.   3 + 3
.   4 + 2
.   2 + 2 + 2
.   5 + 1
.   3 + 2 + 1
.   4 + 1 + 1
.   2 + 2 + 1 + 1
.   3 + 1 + 1 + 1
.   2 + 1 + 1 + 1 + 1
.   1 + 1 + 1 + 1 + 1 + 1
. ------------------------
.  35, 16,  8,  4,  2,  1  --> Row 6 of triangle A181187.
.   |  /|  /|  /|  /|  /|
.   | / | / | / | / | / |
.   |/  |/  |/  |/  |/  |
.  19,  8,  4,  2,  1,  1  --> Row 6 of triangle A066633.
.
More generally, it appears that the sum of column k is also the total number of parts >= k in all partitions of n. It appears that the first differences of the column sums together with 1 give the number of occurrences of k in all partitions of n.
On the other hand we can see that the partitions of 6 contain:
24  odd parts >= 1 (the odd parts).
11 even parts >= 2 (the even parts).
5   odd parts >= 3.
3  even parts >= 4.
2   odd parts >= 5.
1  even part  >= 6.
Then, using the values of the column sums, it appears that:
T(6,1) = 35 - 16 + 8 - 4 + 2 - 1 = 24
T(6,2) =      16 - 8 + 4 - 2 + 1 = 11
T(6,3) =           8 - 4 + 2 - 1 = 5
T(6,4) =               4 - 2 + 1 = 3
T(6,5) =                   2 - 1 = 1
T(6,6) =                       1 = 1
So the 6th row of our triangle gives 24, 11, 5, 3, 1, 1.
Finally, for all partitions of 6, we can write:
The number of  odd parts      is equal to T(6,1) = 24.
The number of even parts      is equal to T(6,2) = 11.
The number of  odd parts >= 3 is equal to T(6,3) = 5.
The number of even parts >= 4 is equal to T(6,4) = 3.
The number of  odd parts >= 5 is equal to T(6,5) = 1.
The number of even parts >= 6 is equal to T(6,6) = 1.
More generally, we can write the same properties for any positive integer.
Triangle begins:
1;
2,    1;
5,    1,  1;
8,    4,  1,  1;
15,   5,  3,  1,  1;
24,  11,  5,  3,  1,  1;
39,  15,  9,  4,  3,  1,  1;
58,  28, 13,  9,  4,  3,  1,  1;
90,  38, 23, 12,  8,  4,  3,  1,  1;
130, 62, 33, 21, 12,  8,  4,  3,  1,  1;
		

Crossrefs

Formula

It appears that T(n,k) = abs(Sum_{j=k..n} (-1)^j*A181187(n,j)).
It appears that A066633(n,k) = T(n,k) - T(n,k+2). - Omar E. Pol, Feb 26 2012

Extensions

More terms from Alois P. Heinz, Feb 18 2012