cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206568 Expand 1/(8 - 8 x + 3 x^3 - 2 x^4) in powers of x, then multiply coefficient of x^n by 8^(1 + floor(n/3)) to get integers.

Original entry on oeis.org

1, 1, 1, 5, 4, 3, 25, 23, 22, 149, 130, 110, 785, 693, 623, 4389, 3880, 3397, 23977, 21115, 18684, 131893, 116502, 102680, 724705, 638985, 563949, 3980357, 3512812, 3098935, 21873593, 19295871, 17024690
Offset: 0

Views

Author

Roger L. Bagula, Feb 09 2012

Keywords

Comments

Bob Hanlon (hanlonr(AT)cox.net) helped convert the expansion to a recursion.

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <64|69|21|-1>>^ iquo(n, 3, 'r'). `if`(r=0, <<1, 5, 25, 149>>, `if`(r=1, <<1, 4, 23, 130>>, <<1, 3, 22, 110>>)))[1, 1]: seq (a(n), n=0..40); # Alois P. Heinz, Feb 11 2012
  • Mathematica
    (* expansion*)
    Table[8^(1 + Floor[n/3])*SeriesCoefficient[Series[1/(8 - 8 x + 3 x^3 - 2 x^4), {x, 0, 50}], n], {n, 0,50}]
    (*recursion*)
    a[1] = 1; a[2] = 1; a[3] = 1; a[4] = 5; a[5] = 4; a[6] = 3;
    a[7] = 25; a[8] = 23; a[9] = 22; a[10] = 149; a[11] = 130;
    a[12] = 110;
    a[n_Integer?Positive] := a[n] = 64*a[-12 + n] + 69*a[-9 + n] + 21*a[-6 +n] - a[-3 + n]
    Table[a[n], {n, 1, 50}]

Formula

G.f.: (-4*x^8-6*x^7-9*x^6-4*x^5-5*x^4-6*x^3-x^2-x-1) / (64*x^12 +69*x^9 +21*x^6 -x^3-1).