cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206582 The least nonsquare number s having exactly n twos in the periodic part of the continued fraction of sqrt(s).

Original entry on oeis.org

5, 2, 19, 45, 71, 153, 199, 589, 301, 989, 526, 1711, 739, 1633, 631, 3886, 1324, 4897, 2524, 7021, 2374, 4189, 2311, 10033, 3571, 3901, 2326, 8869, 4789, 10873, 6301, 10921, 6451, 11929, 6841, 12709, 7996, 13561, 7351, 19177, 9949, 16969, 12286, 22969, 11341
Offset: 0

Views

Author

T. D. Noe, Mar 19 2012

Keywords

Crossrefs

Cf. A206578 (n ones), A206583 (n threes), A206584 (n fours), A206585 (n fives).

Programs

  • Maple
    V:= Array(0..50):  count:= 0:
    with(NumberTheory):
    for i from 2 while count < 51 do
      if issqr(i) then next fi;
      cf:= Term(ContinuedFraction(sqrt(i)),periodic);
      v:= numboccur(cf[2],2);
      if v <= 50 and V[v] = 0 then
        V[v]:= i; count:= count+1;
      fi;
    od:
    convert(V,list); # Robert Israel, May 13 2024
  • Mathematica
    nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 2]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{5}, t]

Extensions

Corrected by Robert Israel, May 13 2024