A206582 The least nonsquare number s having exactly n twos in the periodic part of the continued fraction of sqrt(s).
5, 2, 19, 45, 71, 153, 199, 589, 301, 989, 526, 1711, 739, 1633, 631, 3886, 1324, 4897, 2524, 7021, 2374, 4189, 2311, 10033, 3571, 3901, 2326, 8869, 4789, 10873, 6301, 10921, 6451, 11929, 6841, 12709, 7996, 13561, 7351, 19177, 9949, 16969, 12286, 22969, 11341
Offset: 0
Keywords
Programs
-
Maple
V:= Array(0..50): count:= 0: with(NumberTheory): for i from 2 while count < 51 do if issqr(i) then next fi; cf:= Term(ContinuedFraction(sqrt(i)),periodic); v:= numboccur(cf[2],2); if v <= 50 and V[v] = 0 then V[v]:= i; count:= count+1; fi; od: convert(V,list); # Robert Israel, May 13 2024
-
Mathematica
nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 2]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{5}, t]
Extensions
Corrected by Robert Israel, May 13 2024