A206604 Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers.
1, 1, 3, 9, 27, 73, 189, 465, 1115, 2601, 5973, 13489, 30149, 66641, 146233, 318369, 689403, 1484137, 3181797, 6790641, 14445101, 30617841, 64724553, 136426849, 286926757, 601999633, 1260707529, 2634831585, 5497982025, 11452601761, 23823827825, 49484904257
Offset: 0
Keywords
Examples
a(3) = 9: max: 20 min: 12 9 11 7 5 3 6 5 5 2 3 1/2 5/2 7/2 3/2 7/2 3/2 1/2 5/2 [12, 13, ..., 20] contains 20-12+1 = 9 integers. a(4) = 27: max: 13 min: -13 5 8 -5 -8 0 5 3 0 -5 -3 -2 2 3 0 2 -2 -3 0 -2 0 2 1 -1 2 0 -2 -1 1 [-13, -12, ..., 13] contains 13-(-13)+1 = 27 integers.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= n-> 1 +add(binomial(n, floor(k/2))*(2*k-n), k=0..n): seq(a(n), n=0..40); # second Maple program a:= proc(n) option remember; `if`(n<3, 1+n*(n-1), (3*n^2-6*n+6+(2*n^2-6)*a(n-1)+4*(n-1)*(n-4)*a(n-2) -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2))) end: seq(a(n), n=0..40); # Alois P. Heinz, Apr 25 2013
-
Mathematica
a = DifferenceRoot[Function[{y, n}, {(-2n^2 - 12n - 12) y[n+2] - 3n^2 + 8(n+1)(n+2) y[n] - 4(n-1)(n+2) y[n+1] + (n+1)(n+3) y[n+3] - 12n - 15 == 0, y[0] == 1, y[1] == 1, y[2] == 3, y[3] == 9}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
-
PARI
a(n) = 1 + sum(k=0, n, binomial(n, k\2)*(2*k-n)); \\ Michel Marcus, Dec 20 2020
-
Python
from math import comb def A206604(n): return sum(comb(n,k>>1)*((k<<1)-n) for k in range(n+1))+1 # Chai Wah Wu, Oct 28 2024
Formula
a(n) = 1 + Sum_{k=0..n} C(n,floor(k/2)) * (2*k-n).
G.f.: 1/(1-x) + (1-sqrt(1-4*x^2)) / (2*x-1)^2.
a(n) = 1 + 2*A206603(n).
a(n) ~ n*2^n * (1-2*sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
Comments