cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206604 Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers.

Original entry on oeis.org

1, 1, 3, 9, 27, 73, 189, 465, 1115, 2601, 5973, 13489, 30149, 66641, 146233, 318369, 689403, 1484137, 3181797, 6790641, 14445101, 30617841, 64724553, 136426849, 286926757, 601999633, 1260707529, 2634831585, 5497982025, 11452601761, 23823827825, 49484904257
Offset: 0

Views

Author

Alois P. Heinz, Feb 10 2012

Keywords

Comments

For n>0 the base row of the addition triangle may contain a permutation of any set {b+k, k=0..n} where b is an integer or a half-integer. Each number in a higher row is the sum of the two numbers directly below it. Rows above the base row contain only integers.
a(n) = 3 (mod 4) if n = 2^m with m > 0 and a(n) = 1 (mod 4) else.

Examples

			a(3) =  9:   max:   20          min:   12
                  9   11             7   5
                3   6   5          5   2   3
             1/2 5/2 7/2 3/2    7/2 3/2 1/2 5/2
[12, 13, ..., 20] contains 20-12+1 = 9 integers.
a(4) = 27:   max:   13          min:  -13
                   5  8              -5 -8
                 0  5  3            0 -5 -3
              -2  2  3  0         2 -2 -3  0
            -2  0  2  1 -1      2  0 -2 -1  1
[-13, -12, ..., 13] contains 13-(-13)+1 = 27 integers.
		

Crossrefs

Programs

  • Maple
    a:= n-> 1 +add(binomial(n, floor(k/2))*(2*k-n), k=0..n):
    seq(a(n), n=0..40);
    # second Maple program
    a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
          (3*n^2-6*n+6+(2*n^2-6)*a(n-1)+4*(n-1)*(n-4)*a(n-2)
          -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))
        end:
    seq(a(n), n=0..40); # Alois P. Heinz, Apr 25 2013
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {(-2n^2 - 12n - 12) y[n+2] - 3n^2 + 8(n+1)(n+2) y[n] - 4(n-1)(n+2) y[n+1] + (n+1)(n+3) y[n+3] - 12n - 15 == 0, y[0] == 1, y[1] == 1, y[2] == 3, y[3] == 9}]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
  • PARI
    a(n) = 1 + sum(k=0, n, binomial(n, k\2)*(2*k-n)); \\ Michel Marcus, Dec 20 2020
    
  • Python
    from math import comb
    def A206604(n): return sum(comb(n,k>>1)*((k<<1)-n) for k in range(n+1))+1 # Chai Wah Wu, Oct 28 2024

Formula

a(n) = 1 + Sum_{k=0..n} C(n,floor(k/2)) * (2*k-n).
G.f.: 1/(1-x) + (1-sqrt(1-4*x^2)) / (2*x-1)^2.
a(n) = 1 + 2*A206603(n).
a(n) = 1 + A189390(n)-A189391(n).
a(n) ~ n*2^n * (1-2*sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014